Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T02:10:52.179Z Has data issue: false hasContentIssue false

Kinetics of Ion Beam Synthesis of Sn and Sb Clusters in SiO2 Layers

Published online by Cambridge University Press:  17 March 2011

Sabina Spiga
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza, Italy
Sandro Ferrari
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza, Italy
Marco Fanciulli
Affiliation:
Laboratorio MDM-INFM, via C. Olivetti 2, I-20041 Agrate Brianza, Italy
Bernd Schmidt
Affiliation:
Research Center Rossendorf, Institute of Ion Beam Physics, P.O. Box 510 119, D-01314 Dresden, Germany
Karl-Heinz Heinig
Affiliation:
Research Center Rossendorf, Institute of Ion Beam Physics, P.O. Box 510 119, D-01314 Dresden, Germany
Rainer Grötzschel
Affiliation:
Research Center Rossendorf, Institute of Ion Beam Physics, P.O. Box 510 119, D-01314 Dresden, Germany
Arndt Mücklich
Affiliation:
Research Center Rossendorf, Institute of Ion Beam Physics, P.O. Box 510 119, D-01314 Dresden, Germany
Giuseppe Pavia
Affiliation:
STMicroelectronics, via C. Olivetti 2, I-20041 Agrate Brianza, Italy
Get access

Abstract

In this work we investigate the ion beam synthesis of Sn and Sb clusters in thin oxides. 80 keV (fluences of 0.1-1 × 1016 cm−2) Sn implantation in 85 nm thick SiO2, followed by annealing (800-1000°C for 30-300 sec under Ar or N 2 dry ambient) in a rapid thermal processing (RTP) system, leads to the formation of two cluster bands, near the middle of the SiO2 layer and the Si/SiO2 interface. In addition, big isolated clusters are randomly distributed between the two bands. Cluster-size distribution and cluster-crystallinity are related to implantation fluence and annealing time. Low energy (10-12 keV) Sb and Sn implantation (fluences 2-5 × 1015 cm−2) leads to the formation of very uniform cluster-size distribution. Under specific process conditions, only an interface cluster band is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, Y., Tanaka, A., Fujii, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 86, 3199 (1999).Google Scholar
2. Chen, W., Ahmed, H., and Nakazoto, K., Appl. Phys. Lett. 66, 3383 (1995).Google Scholar
3. Rebohle, L., Borany, J. von, Fröb, H., Skorupa, W., Appl. Phys. B71, 131 (2000).Google Scholar
4. Okamoto, S., Kanemitsu, Y., Min, K. S., and Atwater, H. A., Appl. Phys. Lett. 73, 1829 (1998).Google Scholar
5. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbè, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
6. Chen, W. and Ahmed, H., J. Vac. Sci. Technol. B15, 1402 (1997).Google Scholar
7. Nakajima, A., Futatsugi, T., Nakao, H., Usuki, T., Horiguchi, N. and Yokoyama, N., J. Appl. Phys. 84, 1316 (1998).Google Scholar
8. Nakajima, A., Nakao, H., Ueno, H., Futatsugi, T., and Yokoyama, N., Appl. Phys. Lett. 73, 1071 (1998).Google Scholar
9. Oswald, S., Schmidt, B. and Heinig, K.-H., Surf. Interface Anal. 29, 249 (2000).Google Scholar
10. Markwitz, A., Grötzschel, R., Heinig, K.H., Rebohle, L., Skorupa, W., Nucl. Instr. Meth. B152, 319 (1999).Google Scholar
11. Borany, J. von, Heinig, K.-H., Grötzschel, R., Klimenkov, M., Strobel, M., Stegemann, K.-H., and Thees, H.-J., Micr. Eng. 48, 231 (1999).Google Scholar