Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T15:33:14.343Z Has data issue: false hasContentIssue false

Kinetics and Statistics of Vapor-Liquid-Solid Growth of III-V Nanowires

Published online by Cambridge University Press:  29 February 2012

Jean-Christophe Harmand
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
Frank Glas
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
Gilles Patriarche
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
Fauzia Jabeen
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
Mohamed Réda Ramdani
Affiliation:
Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France
Get access

Abstract

The use of semiconductor nanowires as new material building blocks for developing original devices is conditioned by the controllability of their growth. An important challenge is to form nanowires which include heterostructures of predictable dimensions. This objective requires a precise knowledge of the growth kinetics which appears much more complex for nanowires than for standard two-dimensional layers. Here, we present a method which provides detailed information on nanowire formation. The method is implemented with InP1-xAsx nanowires grown by Au-catalyzed molecular beam epitaxy. Controlled and periodic modulations of the incident vapor phase are generated. Due to these modulations, the nanowires show small and short oscillations of composition along their growth axis. These oscillations furnish a time scale which is recorded in the nanowire solid phase. The instantaneous growth rate and the total length of individual nanowires at any time of the growth are accessible. Moreover, the distribution of the oscillation lengths contains the nucleation statistics. This statistics is shown to be strongly sub-Poissonian, which indicates that some regulation mechanism operates. The rapid depletion of group V atoms in the catalyst drop which follows the growth of each ML could explain the self-regulation of nucleation events.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, R., and Ellis, W., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
2. Tchernycheva, M., Travers, L., Patriarche, G., Glas, F., Harmand, J.-C., Cirlin, G. E. and Dubrovskii, V. G., J. Appl. Phys. 102, 094313, (2007).Google Scholar
3. Plante, M. C. and LaPierre, R. R., J. Appl. Phys. 105, 114304 (2009).Google Scholar
4. Dayeh, S. A., Yu, E. T. and Wang, D. D., Nano Lett. 9, 1967 (2009).Google Scholar
5. Schwalbach, E. J. and Voorhees, P. W., Nano Lett. 8, 37393745 (2008).Google Scholar
6. Kim, B. J., Tersoff, J., Wen, C. Y., Reuter, M. C., Stach, E. A., Ross, F. M.. Phys. Rev. Lett. 103, 155701 (2009).Google Scholar
7. Persson, A. I., Larsson, M. W., Stenström, S., Ohlsson, B. J., Samuelson, L. and Wallenberg, L. R., Nature Mater. 3, 677 (2004).Google Scholar
8. Fröberg, L. E.,. Nano Lett. 8, 3815 (2008).Google Scholar
9. Givargizov, E.I., J. Cryst. Growth 31, 20 (1975).Google Scholar
10. Kashchiev, D., Cryst. Growth Design 6, 1154 (2006).Google Scholar
11. Dheeraj, D.L., Patriarche, G., Zhou, H., Harmand, J.C., Weman, H. and Fimland, B.O.. J. Cryst. Growth 311, 1847 (2009).Google Scholar
12. Ross, F. M., Tersoff, J. and Reuter, M. C., Phys. Rev. Lett. 95, 146104 (2005).Google Scholar
13. Carlino, E. and Grillo, V., Phys. Rev. B 71, 235303 (2005).Google Scholar
14. Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., Bouravleuv, A. D., Samsonenko, Yu. B., Dheeraj, D. L., Zhou, H. L., Sartel, C., Harmand, J. C., Patriarche, G., and Glas, F., Phys. Rev. B 80, 205305 (2009)Google Scholar
15. Harmand, J. C., Glas, F. and Patriarche, G., Phys. Rev. B. 81, 235436. (2010)Google Scholar
16. Glas, F., J. Appl. Phys. 108, 073506 (2010).Google Scholar
17. Borgström, M. T., Immink, G., Ketelaars, B., Algra, R. and Bakkers, E.P.A.M, Nature nanotechnol. 2, 541 (2007).Google Scholar
18. Glas, F., Harmand, J.-C. and Patriarche, G., Phys. Rev. Lett. 104, 135501. (2010)Google Scholar
19. Kashchiev, D., Cryst. Growth and Design 6, 1154 (2006)Google Scholar
20. Glas, F., Harmand, J.-C. and Patriarche, G., Phys. Rev. Lett. 99, 146101 (2007).Google Scholar
21. Chatillon, C., Hodaj, F. and Pisch, A., J. Cryst. Growth, 311, 3598 (2009).Google Scholar
22. Tchernycheva, M., Harmand, J.-C., Patriarche, G., Travers, L. and Cirlin, G. E., Nanotechnology 17, 4025 (2006).Google Scholar
23. Thelander, C., Martensson, T., Bjork, M. T., Ohlsson, B. J., Larsson, M. W., Wallenberg, L. R. and Samuelson, L., Appl. Phys. Lett. 83, 2052 (2003).Google Scholar
24. Tchernycheva, M., Cirlin, G. E., Patriarche, G., Travers, L., Zwiller, V., Perinetti, U., Harmand, J.-C., Nano Lett. 7, 1500 (2007).Google Scholar