Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:41:38.182Z Has data issue: false hasContentIssue false

Kinetic Roughening During Rare-Gas Homoepitaxy

Published online by Cambridge University Press:  10 February 2011

E. Nabighian
Affiliation:
Department of Physics, University of California, Davis, California 95616
M. C. Bartelt
Affiliation:
Sandia National Laboratories, Livermore, California 94550
X.D. Zhu
Affiliation:
Department of Physics, University of California, Davis, California 95616
Get access

Abstract

Using an optical reflectivity difference technique, we monitored the growth of multilayer Xe films on a commensurate monolayer of Xe on Ni(111), from 35 to 60K. A transition occurs near 40K, from rough growth at low temperature to quasi-layer-by-layer growth characterized by persistent oscillations in the reflectivity difference. We discuss this transition in terms of changes in the island formation process and the onset of second layer nucleation. The Xe sticking coefficient at 40K is obtained from the period of the oscillations in the reflectivity difference. We find that the sticking coefficient decreases with increasing fihn thickness at fixed Xe pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brune, H., Surf. Sci. Rep. 31, 121 (1998); J.W. Evans, M.C. Bartelt, and P.A. Thiel, ibid, in preparation.10.1016/S0167-5729(97)00015-0Google Scholar
2 Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250 (1995); Surf. Sci. 423, 189 (1999).10.1103/PhysRevLett.75.4250Google Scholar
3 Kern, K. et al. , Phys. Rev. Lett. 56, 620 (1986); Surf. Sci. 195, 353 (1988).10.1103/PhysRevLett.56.620Google Scholar
4 Youn, H.S., Meng, X.F., and Hess, G.B., Phys. Rev. B 48, 14556 (1993).10.1103/PhysRevB.48.14556Google Scholar
5 Venables, J.A. and Ball, D.J., Proc. R. Soc. London, Ser. A 322, 331 (1971); G.L. Price and J.A. Venables, Surf. Sci. 49, 264 (1975).10.1098/rspa.1971.0071Google Scholar
6 Weiss, P.S. and Eigler, D.M., Phys. Rev. Lett. 69, 2240 (1992).10.1103/PhysRevLett.69.2240Google Scholar
7 Kern, K. et al. , Phys. Rev. Lett. 56, 2823 (1986); Solid State Comm. 62, 391 (1987).10.1103/PhysRevLett.56.2823Google Scholar
8 Itakura, A. and Arakawa, I., J. Vac. Sci. Technol. A 9, 1779 (1991); S. Igarashi et al., ibid 16, 974 (1998); J. Unguris et al., Surf. Sci. 87,415,437 (1979); ibid 109, 522 (1981); ibid 114, 219 (1982); R.J. Behm, C.R. Brundle, and K. Wandelt, J. Chem. Phys. 85, 1061 (1986).10.1116/1.577461Google Scholar
9 Wong, A. and Zhu, X.D., Appl. Phys. A 63, 1 (1996).10.1007/BF01579739Google Scholar
10 Schlichting, H. et al. , J. Chem. Phys. 97, 4453 (1992).10.1063/1.463888Google Scholar
11 Head-Gordon, M. and Tully, J.C., J. Chem. Phys. 95, 9266 (1991).10.1063/1.461207Google Scholar
12 A transition in the size, i, above which islands are effectively stable during deposition is naturally described in terms of the ratio, λ=Hdiss/Hagg, of the rate at which islands of size i+1 dissociate, Hdiss - exp[-Eib/(kBT)]h, to the rate Hagg μ hn at which adatoms of density n and diffusion rate h = vexp[-Ed/(kBT)] aggregate with these islands. kb is the Boltzmann constant. A transition is expected for λ = 0(1). In the steady-state, where n μ F/(hN) and N μ (h/F)1/(l+2) exp[-Elb/(i+2)(kBT)] is the average island density, λ, depends only on the combination Y1=(h/F)exp[-3Elb/(2kBT)], for transitions out of i = 1, and on Y1, = (h/F)exp[-(i+l)Eib/(2kBT)], for transitions out of i > 1. Once triple bonds can dissociate on the time scale of deposition (so “i > 6”), then all islands are unstable (in the absence of strong bonds beyond nearest neighbors), and a formulation based on a sharp value of i is less useful. See Bartelt, M.C., Perkins, L.S., and Evans, J.W., Surf. Sci. 344, L1193 (1995).10.1016/0039-6028(95)00930-2+1.+Once+triple+bonds+can+dissociate+on+the+time+scale+of+deposition+(so+“i+>+6”),+then+all+islands+are+unstable+(in+the+absence+of+strong+bonds+beyond+nearest+neighbors),+and+a+formulation+based+on+a+sharp+value+of+i+is+less+useful.+See+Bartelt,+M.C.,+Perkins,+L.S.,+and+Evans,+J.W.,+Surf.+Sci.+344,+L1193+(1995).10.1016/0039-6028(95)00930-2>Google Scholar
13 Tersoff, J., Gon, A.W. Denier van der, and Tromp, R.M., Phys. Rev. Lett. 72, 266 (1994).10.1103/PhysRevLett.72.266Google Scholar
14 Rottler, J. and Maass, P., Phys. Rev. Lett. 83, 3490 (1999).10.1103/PhysRevLett.83.3490Google Scholar
15 Evans, J.W. and Bartelt, M.C., J. Vac. Sci. Technol. A 12, 1800 (1994); J.G. Amar and F. Family, Phys. Rev. Lett. 74, 2066 (1995).10.1116/1.579009Google Scholar
16 Li, Y. et al. , Phys. Rev. B 56, 12539 (1997).10.1103/PhysRevB.56.12539Google Scholar
17 Corresponding behavior for the Xe parameters in Table I, e.g., h/F ≍ 1014 and h′/h ≍ 10−4 at 40K, should be similar, but simulations would be much more time consuming.Google Scholar