Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:20:06.769Z Has data issue: false hasContentIssue false

Is Superplasticity in the Future of Nanophase Materials?

Published online by Cambridge University Press:  16 February 2011

R. W. Siegel*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO2, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sherby, O. D., these Proceedings.Google Scholar
2. Nieh, T. G., McNally, C. M., and Wadsworth, J., J. Metals 41(9), 31 (1989).Google Scholar
3. Birringer, R. and Gleiter, H., in Encyclopedia of Materials Science and Engineering, Suppl. Vol.1, Cahn, R. W., ed. (Pergamon Press, Oxford, 1988) p. 339.Google Scholar
4. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989); G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. 24, 145 (1990).Google Scholar
5. Mayo, M. J., Siegel, R. W., Narayanasamy, A., and Nix, W. D., J. Mater. Res. 5, 1073 (1990).Google Scholar
6. Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, Hansen, N. et al., eds. (Risø National Laboratory, Roskilde, 1981) p. 15.Google Scholar
7. Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
8. Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, Yussouff, M., ed. (World Scientific Publ. Co., Singapore, 1987) p. 403.Google Scholar
9. Hahn, H., Eastman, J. A., and Siegel, R. W., in Ceramic Transactions, Ceramic Powder Science, Vol.1, Part B, Messing, G. L. et al., eds. (American Ceramic Society, Westerville, 1988) p. 1115.Google Scholar
10. Eastman, J. A., Liao, Y. X., Narayanasamy, A., and Siegel, R. W., Mater. Res. Soc. Symp. Proc. 155, 255 (1989).Google Scholar
11. Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).Google Scholar
12. Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
13. Thölén, A. R., Acta Metall. 27, 1765 (1979).Google Scholar
14. Siegel, R. W. and Eastman, J. A., Mater. Res. Soc. Symp. Proc. 132, 3 (1989).Google Scholar
15. Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., IIIGoddard, W. A., Kaldor, A., Louie, S. G., Moskovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).Google Scholar
16. Hahn, H. and Averback, R. S., J. Appl. Phys. 67, 1113 (1990).Google Scholar
17. Iwama, S., Hayakawa, K., and Arizumi, T., J. Cryst. Growth 56,265 (1982).Google Scholar
18. Baba, K., Shohata, N., and Yonezawa, M., Appl. Phys. Lett. 54, 2309 (1989).Google Scholar
19. Matsunawa, A. and Katayama, S., in Laser Welding, Machining and Materials Processing, Proc. ICALEO ′85, Albright, C., ed. (IFS Publ. Ltd.,1985).Google Scholar
20. Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).Google Scholar
21. Schaefer, H.-E., Würschum, R., Birringer, R., and Gleiter, H., Phys. Rev. B 38, 9545 (1988).Google Scholar
22. Averback, R. S., Hahn, H., Höfler, H. J., Logas, J. L., and Chen, T. C., Mater. Res. Soc. Symp. Proc. 153, 3 (1989).Google Scholar
23. Hort, E., Diploma Thesis, Universität des Saarlandes, Saarbrücken (1986).Google Scholar
24. Thomas, G. J., Siegel, R. W., and Eastman, J. A., Mater. Res. Soc. Symp. Proc. 153, 13 (1989); Scripta Metall. 24, 201 (1990).Google Scholar
25. Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).Google Scholar
26. Epperson, J. E., Siegel, R. W., White, J. W., Klippert, T. E., Narayanasamy, A., Eastman, J. A., and Trouw, F., Mater. Res. Soc. Symp. Proc. 132, 15 (1989).Google Scholar
27. Siegel, R. W., Bull. Amer. Phys. Soc. 35,411 (1990)Google Scholar
28. Li, Z., Ramasamy, S., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 195 (1988).Google Scholar
29. Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).Google Scholar
30. Horváth, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).Google Scholar
31. Horváth, J., Defect and Diffusion Forum 66–69, 207 (1989).Google Scholar
32. Birringer, R., Hahn, H., Höfler, H., Karch, J., and Gleiter, H., Defect and Diffusion Forum 59, 17 (1988).Google Scholar
33. Hahn, H., Logas, J., Höfler, H. J., and Averback, R. S., these Proceedings.Google Scholar
34. Karch, J. and Birringer, R., Ceramics International 16, in press (1990).Google Scholar