Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:33:37.540Z Has data issue: false hasContentIssue false

Ionic Transport in Silicate Glasses Modelled from the Local Structure

Published online by Cambridge University Press:  15 February 2011

G. Neville Greaves
Affiliation:
SERC Daresbury Laboratory, Warrington WA4 4AD, Uk
G. J. Baker
Affiliation:
SERC Daresbury Laboratory, Warrington WA4 4AD, Uk
A. J. Dent
Affiliation:
SERC Daresbury Laboratory, Warrington WA4 4AD, Uk
M. Oversluizen
Affiliation:
SERC Daresbury Laboratory, Warrington WA4 4AD, Uk
K. L. Ngai
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000, USA
Get access

Abstract

Comprehensive studies using X-ray Absorption Fine Structure (XAFS) spectroscopy of the local environments in oxide glasses of alkalis like Na point to the existence of channels of modifying oxide within the glass forming network - a Modified Random Network or MRN. It has been proposed that these are the primary pathways for ionic conduction. Such microsegregation demands a high alkali coordination for non-bridging oxygens. This has now been confirmed from analysis of the O near edge XAFS of silica and sodium disilicate glass. Dielectric relaxation in oxide glasses provides considerable evidence for the cooperative action of alkali ions. The MRN has been used to develop specific microscopic models for ionic transport based on XAFS and incorporating correlated ionic movement. These quantitatively predict the ionic conductivity of silicate and aluminosilicate glasses and the compositional dependence of the activation energy with alkali concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Greaves, G.N., Glass Science and Technology 4A edited by Uhlmann, D.R. and Kreidl, N.J., (Academic Press, London 1990), p.1.Google Scholar
[2] Greaves, G.N., Fontaine, A., Lagarde, P., Raoux, D., Gurman, S. J., Nature (London), 293, 611 (1981).Google Scholar
[3] Greaves, G.N., J. Non-Cryst. Solids, 71, 203 (1985).CrossRefGoogle Scholar
[4] Huang, C., Cormack, A.N., J. Chem. Phys., 93, 8180 (1990); 95, 3634 (1991); C. Huang, A. N. Cormack, J. Mater. Chem. 2, 281 (1992)..Google Scholar
[5] Vessal, B., Greaves, G.N., Martin, P.T., Chadwick, A.V., Mole, R., Houde-Walter, S., Nature (London) 356, 504 (1992).Google Scholar
[6] Greaves, G.N., Gurman, S.J., Catlow, C.R.A., Chadwick, A. V., Houde-Walter, S., Henderson, C.M.B., Dobson, B.R., Phil. Mag. A 64, 1059 (1991).CrossRefGoogle Scholar
[7] Greaves, G.N. and Ngai, N.L. Proc. Int. Conf. Defects in Insulating Materials, Nordkirchen 1992 (in press, 1993).Google Scholar
[8] Maekawa, H., Maekawa, T., Kawamura, K., Yokakawa, T., J. Non-Cryst. Solids, 127, 53 (1991).Google Scholar
[9] Gurman, S.J., J. Non-Cryst. Solids, 125, 151 (1990).Google Scholar
[10] Cao, Y., Cormack, A.N., unpublished results.Google Scholar
[11] Houde-Walter, S.N., Inman, J.M., Dent, A.J., Greaves, G.N., unpublished results.Google Scholar
[12] Cormack, A.N. (private communication).Google Scholar
[13] Pant, A.K., Cruikshank, D.W., Acta. Crystallogr. B24, 13 (1968).Google Scholar
[14] Elliott, S.R., Nature (London) 357, 650 (1992).Google Scholar
[15] Sprenger, D., Bach, H., Meisel, W., Güitlich, P..The Physics of Non-Crystalline Solids edited by Pye, L.D., LaCourse, W.C., Stevens, H.J. (Taylor & Francis, London 1992), p.42.Google Scholar
[16] Surman, M., Cragg-Hine, I., Singh, J., Bowler, B.J., Padmore, H.A., Norman, D., Johnson, A.L., Walter, W.K., King, D.A., Davis, R., Purcell, K.G., Thornton, G., Rev. Sci. Instrum, 63, 4349 (1992).Google Scholar
[17] Greaves, G.N., Baker, G., Surman, M., Oversluizen, M., unpublished results.Google Scholar
[18] Ngai, K.L., Rendell, R.W., Jain, H., Phys. Rev., B30, 2133 (1984).Google Scholar
[19] Balzer-Jollenbeck, G., Kanert, O., Jain, H., Ngai, K.L., Phys. Rev., B39, 6071 (1989).Google Scholar
[20] Ngai, K.L., Martin, S.W., Phys. Rev. B 40, 10550 (1989).Google Scholar
[21] Isard, J.O., J Soc. Glass Technol., 43, 113 (1959); H. Wakabayashi, Phys. Chem. Glasses, 30, 52 (1989).Google Scholar
[22] Frischat, G.H., Ionic Diffusion in Oxide Glasses (Trans. Tech., Aedermannsdorf 1975).Google Scholar