Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:45:10.320Z Has data issue: false hasContentIssue false

Ionic Overlayers on Corrugated Surfaces I: Structure

Published online by Cambridge University Press:  01 January 1992

Tahir Çağin
Affiliation:
Molecular Simulations Inc., Suite 540, 199 S Robles Av., Pasadena, CA 91101
Surajit Sen
Affiliation:
Department of Physics and Astronomy and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Hyangsuk Seong
Affiliation:
Department of Physics and Astronomy and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
S.D. Mahanti
Affiliation:
Department of Physics and Astronomy and the Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48824
Get access

Abstract

Structural and dynamic properties of a large class of intercalation compounds can be modelled by a collection of ions interacting via a screened Coulomb potential and subjected to the corrugation potential produced by the host atoms. In this paper we discuss the results of Molecular Dynamics simulation studies of the ground state structure of RbC24 and related systems focussing primarily on the micro-structure i.e.on the nature of the domains and domain walls.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Graphite Intercalation Compounds, Vol 1, Structure and Dynamics, ed. by Zabel, H. and Solin, S. A., (Springer Series on Topics in Current Physics, Springer (1990).Google Scholar
2. Solin, S. A. and Zabel, H., Adv. in Phys. 37, 87 (1988).Google Scholar
3. Clarke, R., Gray, J. N., Homma, H., and Winokur, M. J., Phys. Rev. Lett. 47, 1407 (1981); Winokur, M. J. and Clarke, R., Phys. Rev. Lett. 54, 811 (1985); Winokur, M. J. and Clarke, R., Phys. Rev. 34, 4948 (1986);See also M. J. Winokur, Ph. D. thesis, University of Michigan (1986)Google Scholar
4. Zabel, H., Magerl, A., Dianoux, A. J., and Rush, J. J., Phys. Rev. Lett. 50, 2094 (1983); Kamitakahara, W.A. and Zabel, H., Phys. Rev. B 32, 7817 (1985); Zabel, H., Magerl, A., Rush, J. J., and Misenheimer, M. E., Phys. Rev. B 40, 7616 (1989).Google Scholar
5. Cai, Zhixiong and Mahanti, S. D., Phys. Rev. B 36, 6928 (1987); S. D. Mahanti, Synthetic Metals 34, 307 (1989).Google Scholar
6. Cui, J. and Fain, S. C. Jr., Phys. Rev. B 39, 8628 (1989).Google Scholar
7. Moss, S. C., Reiter, G., Robertson, J. L., Thompson, C., Fan, J.D., and Oshima, K., Phys. Rev. Lett. 57, 3191 (1986); Fan, J. D., Karim, Omar A., Reiter, G., and Moss, S. C., Phys. Rev. B 39, 6111 (1989); Fan, J. D., Reiter, George, and Moss, S. C., Phys. Rev. Lett. 64, 188 (1990).Google Scholar
8. Chen, Zhuo–Min, Karim, Omar A., and Pettitt, B. Montgomery, J. Chem. Phys. 89(2), 1042 (1988).Google Scholar
9. Seong, Hyangsuk, Sen, S., Çağin, Tahir, and Mahanti, S. D., Phys. Rev. B 45, 8841 (1992); Çağin, Tahir, Sen, Surajit, Seong, Hyangsuk, and Mahanti, S. D., Mol. Simulation, (to appear in Nov. 1992)Google Scholar
10. Allen, M. P. and Tildesley, D. J., Computer Simulations in Liquids, Clarendon, Oxford (1987).Google Scholar
11. Plischke, M. and Leckie, W. D., Can. J. Phys. 60, 1139 (1982).Google Scholar
12. Rousseaux, F., Moret, R., Guerard, D., and Lagrange, P., Phys. Rev. B 42, 725 (1990); Rousseaux, F., et al. , Synth. Met. 12, 45 (1985).Google Scholar