Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T04:46:43.306Z Has data issue: false hasContentIssue false

Ionic Liquids Interactions with Materials Surfaces Applications in Tribology and Nanotechnology

Published online by Cambridge University Press:  01 February 2011

Maria-Dolores Bermúdez
Affiliation:
[email protected], Universidad Politécnica de Cartagena, Ingeniería de Materiales y Fabricación, Campus de la Muralla del Mar, C/ Doctor Flemind s/n, 30202-Cartagena (Spain), Cartagena, 30202, Spain
Francisco-José Carrión
Affiliation:
[email protected], Universidad Politécnica de Cartagena, Ingeniería de Materiales y Fabricación, Cartagena, 30202, Spain
Patricia Iglesias
Affiliation:
[email protected], Universidad Politécnica de Cartagena, Ingeniería de Materiales y Fabricación, Cartagena, 30202, Spain
Ana-Eva Jiménez
Affiliation:
[email protected], Universidad Politécnica de Cartagena, Ingeniería de Materiales y Fabricación, Cartagena, 30202, Spain
Ginés Martínez-Nicolás
Affiliation:
[email protected], Universidad Politécnica de Cartagena, Ingeniería de Materiales y Fabricación, Cartagena, 30202, Spain
José Sanes
Affiliation:
[email protected], Universidad Politécnica de Cartagena, Ingeniería de Materiales y Fabricación, Cartagena, 30202, Spain
Get access

Abstract

The extraordinary combination of high thermal stability, low volatility and the possibility of tailoring the physical and chemical properties of ionic liquids (ILs) by modifying their molecular features such as the length and nature of the cation lateral chains and the anion size and composition, has open the field of application of these green ordered fluids.

ILs have shown their ability to provide effective lubrication with very low friction coefficients and wear rates under conditions for which the currently used lubricating fluids fail. These conditions cover strategic technologies such as aerospace, microelectronics and nanotechnology applications.

At the present moment, there exist no liquid lubricants for high temperature, high vacuum and cryogenic conditions. We have determined the lubricating ability of ILs under extreme temperature conditions.

We have determined the conditions for the formation of tribocorrosion reaction products at metal-metal and metal-polymer interfaces. In the case of fluorine or phosphorus-containing imidazolium ionic liquids, formation of metallic fluorides and phosphates at the contact surfaces is the determining wear mechanism step.

The surface interactions of imidazolium room temperature ILs have been studied in a variety of materials in sliding contact under variable conditions, both as neat lubricants and as additives of conventional basestocks.

The ability of ILs molecules to interact with surfaces has also been explored in nanotechnology applications. It is well known that the use of ILs as solvents in the synthetic route, allows the control of size and shape of a variety of nanoparticles. We have developed new polymer/IL/nanoparticle nanocomposites where the size, morphology and distribution of the nanoparticles are controlled by surface interactions with IL molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eisert, F., Gurka, M., Legant, A., Buck, M., Grunze, M., Science 287 468 (2000).Google Scholar
2. He, G., Müser, M.H., Robbins, M.O., Science 284 1650 (1999).Google Scholar
3. Hsu, S.M., Zhang, J., Yin, Z., Tribol. Lett., 13 131 (2002).Google Scholar
4. Erdemir, A., Tribol. Int., 38 249 (2005).Google Scholar
5. Mougin, K., Castelein, G., Haidara, H., Tribol. Lett., 17 11 (2004).Google Scholar
6. Ye, C., Liu, W., Chen, Y., Yu, L., Chem. Commun. 2244 (2001).Google Scholar
7. Liu, W., Ye, C., Chen, Y., Ou, Z., Sun, D.C., Tribol. Int. 35 503 (2002).Google Scholar
8. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P., Tribol. Lett. 13 81 (2002).Google Scholar
9. Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z., Wear, 256 44 (2004).Google Scholar
10. Mu, Z., Liu, W., Zhang, S., Zhou, F., Chem. Lett. 33 524 (2004).Google Scholar
11. Reich, R.A., Stewart, P.A., Bohaychick, J., Urbanski, J.A.. Lubr. Eng., 7 16 (2003).Google Scholar
12. Philips, B.S., Zabinski, J.S., Tribol. Lett., 17 533 (2004).Google Scholar
13. Mu, Z., Zhou, F., Zhang, S., Liang, Y., Liu, W., Tribol. Int. 38 725 (2005).Google Scholar
14. Liu, X., Zhou, F., Liang, Y., Liu, W., Wear, 261 1174 (2006).Google Scholar
15. Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J., Tribol Lett. 22 207 (2006).Google Scholar
16. Yu, G.Q., Yan, S.Q., Zhou, F., Liu, X.Q., Liu, W.M., Liang, Y.M., Tribol. Lett., 25 197 (2007).Google Scholar
17. Nainaparampil, J.J., Eapen, K.C., Sanders, J.H., et al., J. Microelectromech. Sys., 16 836 (2007).Google Scholar
18. Suzuki, A., Shimka, Y., Masuko, M., Tribol. Lett, 27 307 (2007).Google Scholar
19. Liu, X., Zhou, F., Liang, Y., Liu, W., Tribol Lett. 23 191 (2006).Google Scholar
20. Kamimura, H., Kubo, T., Minami, I., Mori, S., Tribol. Int. 40 620 (2007).Google Scholar
21. Ge, L.L., Chen, L.P., Guo, R., Tribol. Lett. 28 123 (2007).Google Scholar
22. Phillips, B.S., John, G., Zabinski, J.S., Tribol. Lett. 26 85 (2007).Google Scholar
23. Zhu, M., Yan, J., Mo, Y., Bai, M., Tribol. Lett, 29 177 (2008).Google Scholar
24. Nooruddin, N.S., Walhbeck, P.G., Carper, W.R., J. Mol. Struct. 822 1 (2007).Google Scholar
25. Iglesias, P., Bermúdez, M.D., Carrión, F.J., Marténez-Nicolás, G., Wear, 256 386 (2004).Google Scholar
26. Jiménez, A.E., Iglesias, P., Bermúdez, M.D., Carrión, F. J., Marténez-Nicolás, G., Wear 260 766 (2006).Google Scholar
27. Jiménez, A.E., Bermúdez, M.D., Carrión, F. J., Marténez-Nicolás, G., Wear, 261 347 (2006).Google Scholar
28. Jiménez, A.E., Bermúdez, M.D., Ionic liquids as lubricants for steel-aluminum contacts at low and elevated temperatures. Tribol. Lett. 26 53 (2007).Google Scholar
29. Sanes, J., Carrión, F.J., Bermúdez, M.D., Marténez-Nicolás, G., Tribol. Lett., 21 121 (2006).Google Scholar
30. Sanes, J, Carrión, F.J., Bermúdez, M.D., E-Polymers, 005 (2007).Google Scholar
31. Carrión, F.J., Sanes, J, Bermúdez, M.D., Wear, 262 1504 (2007).Google Scholar
32. Sanes, J, Carrión, F.J., Jiménez, A.E., Bermúdez, M.D., Wear, 263 658 (2007).Google Scholar
33. Carrión, F.J., Sanes, J, Bermúdez, M.D., Mater. Lett. 61 4531 (2007).Google Scholar
34. Uerdingen, M., Treber, C., et al., Green Chem., 7 321 (2005).Google Scholar
35. Perissi, I., Bardi, U., et al. Corros. Sci. 48 2349 (2006).Google Scholar
36. Garcéa, B., Armand, M., J. Power Sources 132 206 (2004).Google Scholar
37. Reddy, R.G., Zhang, Z.J., Arenas, M.F., Blake, D.M., High Temp. Mater. Process. 22 87 (2003).Google Scholar
38. Bermúdez, M.D., Jiménez, A.E., Marténez-Nicolás, G., Appl. Surf. Sci., 253 7295 (2007).Google Scholar
39. Antonietti, M., Kuang, D., Smarsly, B., Zhou, Y., Angew. Chem. Int. Ed. 43 4988 (2004).Google Scholar
40. Bourlinos, A.B., Srassinopoulos, A., Anglos, D., Herrera, R. Petridis, R.A.D., Giannelis, E.P. Small 2 513 (2006).Google Scholar
41. Jacob, D.S., Bitton, L., et al., Chem. Mater. 18 3162 (2006).Google Scholar
42. Liu, D.P., Li, G.D., Su, Y., Chen, J.S., Angew. Chem. Int. Ed. 45 7370 (2006).Google Scholar
43. Wang, J., Cao, J., Fang, B., Lu, P., Deng, S., Wang, H., Mater. Lett. 59 1405 (2005).Google Scholar
44. Briscoe, B.J., Tribology of polymers: a perspective, in Microstructure and microtribology of polymer surfaces. Tsuruk, V.V., Wahl, K.J. (eds.). American Chemical Society, 2000, pp. 222.Google Scholar
45. Briscoe, B.J., Sinha, S.K., Proc. Inst. Mech. Eng.. Part I: J. Eng. Tribol. 216 401 (2002).Google Scholar
46. Myshkin, N.M., Petrovets, M.I., Kovalev, A.V., Tribol. Int. 38 910 (2005).Google Scholar
47. Scott, M.P., Benton, M.G., Rahman, M., Brazel, C.S., ACS Sym. Ser. 856 468 (2003).Google Scholar
48. Kowalczyk, K., Spychaj, T., Polymery, 48 833 (2003).Google Scholar
49. Arman, M., Brazel, C.S., Prog. Polym. Sci., 29 223 (2004).Google Scholar
50. Lewandowski, A., Swiderska, A., Solid State Ionics, 169 21 (2004).Google Scholar
51. Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G., Macromol. Mater. Eng. 292 387 (2007).Google Scholar