Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:41:39.275Z Has data issue: false hasContentIssue false

Ionic Conductivities of Lithium Phosphorus Oxynitride Glasses, Polycrystals and Thin Films

Published online by Cambridge University Press:  16 February 2011

B. Wang
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
J. B. Bates
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
B. C. Chakoumakos
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
B. C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
B. S. Kwak
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
J. D. Robertson
Affiliation:
Department of Chemistry, University of Kentucky, Lexington, KY 40502, USA
Get access

Abstract

Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li2.88PO3.73N0.14 with the γ-Li3PO4 structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 × 10-7 and 8.9 × 10-7 S-cm-1 at 25°C, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Bates, J. B., Dudney, N. J., Gruzalski, G. R., Zuhr, R. A., Choudhury, A., Luck, C. F. and Robertson, J. D., Solid State Ionics 53/56, 647 (1992).Google Scholar
2. Bates, J. B., Gruzalski, G. R., Dudney, N. J. and Luck, C. F., Proc. 35th Power Sources Symp., p. 337 (1992).Google Scholar
3. Bates, J. B., Dudney, N. J., Gruzalski, G. R., Luck, C. F., Yu, X-H. and Jones, S. D., Solid State Tech., July, 59 (1993).Google Scholar
4. Doreau, M., Anouar, A. Abou el and Robert, G., Mat. Res Bul. 15, 285 (1980).Google Scholar
5. Pradel, A., Pagnier, T. and Ribes, M., Solid State Ionics 17, 147 (1985).Google Scholar
6. Chakoumakos, B. C., Fernandez-baca, J. A. and Boatner, L. A., J. Solid State Chem. 103, 105 (1993).Google Scholar
7. Wang, B., Chakoumakos, B. C., Sales, B. C., Kwak, B. S., Bates, J. B., J. Solid State Chem., in press.Google Scholar
8. Larson, A. C. and Dreele, R. B. Von, GSAS -- General Structure Analysis System, Rept. LA-UR-86-748, Los Alamos National Laboratory, Los Alamos, NM 87545, 1990.Google Scholar
9. Rietveld, H. M., J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
10. Marchand, R., Agliz, D., Boukbir, L., Quemerais, A., J. Non-Cryst. Solids 103, 35 (1988).Google Scholar
11. Wagner, C. D., Riggs, W. M., Davis, L. E. and Moulder, J. F., In Handbook of X-ray Photoelectron Spectroscopy: edited by Muilenberg, G. E. (Perkin-Elmer Corporation: Eden Prairie, MN, 1979).Google Scholar
12. Carette, B., Ribes, M. and Souquet, J. L., Solid State Ionics 9/10, 735 (1983).Google Scholar
13. Tatsumisago, M., Yoneda, K., Machida, N. and Minami, T., J. Non-Cryst. Solids 95/96, 857 (1987).Google Scholar
14. Unuma, H., Komori, K. and Saka, S., J. Non-Cryst. Solids 95/96, 913 (1987).Google Scholar
15. Anderson, O. L. and Stuart, D. A., J. Am. Cerm. Soc. 37, 573 (1954).Google Scholar
16. Swanson, H. E., Morris, M. C., Evans, E. H. and Ulmer, L., Natl. Bur. Stand. (U. S.) Monogr. 25, 39 (1964).Google Scholar
17. Keffer, C., Mighell, A., Mauer, F., Swanson, H. and Block, S., Inorg. Chem. 6, 119 (1969).Google Scholar
18. Baur, W. H., Inorg. Nucl. Chem. Lett. 16, 525 (1980).Google Scholar
19. Zemann, J., Acta Cryst. 13, 863 (1960).Google Scholar
20. Hong, H. Y-P., Mat. Res. Bull. 13, 117 (1978).Google Scholar
21. Dudney, N. J., Bates, J. B. and Robertson, J. D., J. Vac. Sci. Technol. A11, 377 (1993).Google Scholar
22. Pradel, A. and Ribes, M., Mat. Sci. Eng. B3, 45 (1989).Google Scholar