Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:25:46.685Z Has data issue: false hasContentIssue false

Ion Irradiation Induced Crosslinking Effects on Mechanical Properties of Photoresist Films

Published online by Cambridge University Press:  10 February 2011

I. T. S. Garcia
Affiliation:
Curso de Pós-Graduação em Ciência dos Materiais
D. Samios
Affiliation:
Instituto de Química
F. C. Zawislaka
Affiliation:
Instituto de Física, UFRGS, 91501–970 Porto Alegre, Brasil
J. A. H. Da Jornada
Affiliation:
Instituto de Física, UFRGS, 91501–970 Porto Alegre, Brasil
C. E. Foerster
Affiliation:
Departamento de Física, UEPG, 84010-330 Ponta Grossa, Brasil
F. C. Serbena
Affiliation:
Departamento de Física, UEPG, 84010-330 Ponta Grossa, Brasil
C. M. Lepienski
Affiliation:
Departamento de Física, UFPR, 81531–990 Curitiba, Brasil
Get access

Abstract

We investigate the crosslinking process in ion irradiated AZ 1350J™ photoresist. The films were deposited on clean silicon wafers and irradiated with 380 keV He ions in the fluence range of 1013 to 1016 He.cm-2, corresponding to average deposited energy densities from 0.02 to 20 eV. Å-3.respectively. Nanoindentation, Raman spectroscopy as well as gel content and density measurements have been used to determine mechanical and structural properties of the irradiated films. The results show that the irradiation induces crosslinking of the polymeric chains but also produces carbonization of the films. For deposited energy densities up to 2 eV.Å-3. the crosslinking process is predominant and is mainly responsible for the increase of hardness and Young's modulus by respectively 5 and 2 times in relation to the values of the pristine film and for the gel content of 90%. For deposited energy densities larger than 2 eV.Å-3, the photoresist film is progressively transformed into an amorphous carbon layer as is shown by the Raman results, and also by the increase of the density at a deposited energy of 20 eV.Å-3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, E.H., Rao, G.R., Lewis, M.B. and Mansur, L.K., J. Mater. Res. 9, 1043(1994).Google Scholar
2. Behar, M., Grande, P.L., Amaral, L., J.R, Kaschny, F.C. Zawislak Guimaraes, R.B., Biersack, J.P. and Fink, D., Phys. Rev. B 41, 6145(1990).Google Scholar
3. Wang, Y.Q., Giedd, R.E., Moss, M.G. and Kaufmann, J., Nucl. Instr. and Meth. in Phys. Res. B, 127/128, 710 (1997).Google Scholar
4. Ghailane, F., Manivannan, G., Knystautas, E.J. and Lessard, R.A., J. Op. Soc. of Am. A 12, 1683(1995).Google Scholar
5. Zawislak, F.C., Garcia, I.T.S., Samios, D., Baptista, D.L., Fichtner, P.F.P., Maria, E. Alves, Silva, F. da, Soares, J.C. in Atomistic Mechanisms in Beam Synthesis and Irradiation of Materials, edited by Barbour, J.C., Roorda, S., Ila, D. and Tsujioka, M. (Mat. Res. Soc. Proc. 504, Boston, Massachusetts, 1998) pp. 443–.Google Scholar
6. Garcia, I.T.S., Zawislak, F.C. and Samios, D., Nucl. Instrum. and Meth. in Phys. Res. B 148, 1111(1999).Google Scholar
7. Biersack, J. P. and Haggmark, L. G., Nucl. Instr. And Meth. In Phys. Res. 174, 2257(1980).Google Scholar
8. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564(1992).Google Scholar
9. Swanepoel, R., J. of Phys. 16, 1214, (1983).Google Scholar
10. Pivin, J. C., Thin Solid Films 263, 185, (1995).Google Scholar