Article contents
Ion Implantation Doping and High Temperature Annealing of GaN
Published online by Cambridge University Press: 21 February 2011
Abstract
The III-V nitride-containing semiconductors InN, GaN, and AIN and their ternary alloys are the focus of extensive research for application to visible light emitters and as the basis for high temperature electronics. Recent advances in ion implantation doping of GaN and studies of the effect of rapid thermal annealing up to 1100 °C are making new device structures possible. Both p- and n-type implantation doping of GaN has been achieved using Mg co-implanted with P for p-type and Si-implantation for n-type. Electrical activation was achieved by rapid thermal anneals in excess of 1000 °C. Atomic force microscopy studies of the surface of GaN after a series of anneals from 750 to 1100 °C shows that the surface morphology gets smoother following anneals in Ar or N2. The photoluminescence of the annealed samples also shows enhanced bandedge emission for both annealing ambients. For the deep level emission near 2.2 eV, the sample annealed in N2 shows slightly reduced emission while the sample annealed in Ar shows increased emission. These annealing results suggest a combination of defect interactions occur during the high temperature processing.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
REFERENCES
- 3
- Cited by