Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T22:38:18.422Z Has data issue: false hasContentIssue false

Ion Implantation Doping and High Temperature Annealing of GaN

Published online by Cambridge University Press:  21 February 2011

J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
M. Hagerott crawford
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
A. J. Howard
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603 Emcore Corp., Somerset, NJ 08873
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. B. Vartuli
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. Yuan
Affiliation:
Emcore Corp., Somerset, NJ 08873
R. A. Stalls
Affiliation:
Emcore Corp., Somerset, NJ 08873
J. Ramer
Affiliation:
University of New Mexico, Albuquerque, NM 87131
S. D. Hersee
Affiliation:
University of New Mexico, Albuquerque, NM 87131
R. G. Wilson
Affiliation:
Hughes Research Laboratory, Malibu CA 90265
Get access

Abstract

The III-V nitride-containing semiconductors InN, GaN, and AIN and their ternary alloys are the focus of extensive research for application to visible light emitters and as the basis for high temperature electronics. Recent advances in ion implantation doping of GaN and studies of the effect of rapid thermal annealing up to 1100 °C are making new device structures possible. Both p- and n-type implantation doping of GaN has been achieved using Mg co-implanted with P for p-type and Si-implantation for n-type. Electrical activation was achieved by rapid thermal anneals in excess of 1000 °C. Atomic force microscopy studies of the surface of GaN after a series of anneals from 750 to 1100 °C shows that the surface morphology gets smoother following anneals in Ar or N2. The photoluminescence of the annealed samples also shows enhanced bandedge emission for both annealing ambients. For the deep level emission near 2.2 eV, the sample annealed in N2 shows slightly reduced emission while the sample annealed in Ar shows increased emission. These annealing results suggest a combination of defect interactions occur during the high temperature processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, 1687 (1994).Google Scholar
2 Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
3 Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Electronics Lett., 30, 1248 (1994).Google Scholar
4 Kahn, M. A., Kuznia, J. N., Olsen, D. T., Schaff, W. J., Burm, J. W., and Shur, M. S., Appl. Phys. Lett., 65, 1121(1994).Google Scholar
5 Chow, T. P. and Tyagi, R., IEEE Trans. Electron. Dev., 41, 1481 (1994).Google Scholar
6 Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
7 Zolper, J. C., Hagerott Crawford, M., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C., and Stall, R. A., J. Elec. Mat. in press.Google Scholar
8 Pankove, J. I. and Hutchby, J. A., J. Appl. Phys., 47, 5387 (1976).Google Scholar
9 Khan, M. A., Skogman, R. A., Schule, R. G., and Gershenzon, M., Appl. Phys. Lett., 42, 430 (1983).Google Scholar
10 Khan, M. A., Skogman, R. A., Schule, R. G., and Gershenzon, M., Appl. Phys. Lett., 43, 492 (1983).Google Scholar
11 Pearton, S. J., Abernathy, C. R., Wisk, P. W., Hobson, W. S., and Ren, F., Appl. Phys. Lett., 63, 1143(1993).Google Scholar
12 Zolper, J. C., Pearton, S. J., Abernathy, C. R., and Vartuli, C. B., Appl. Phys. Lett. 66, 3042 (1995).Google Scholar
13 Vartuli, C. B., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., and Zolper, J. C., submitted to J. Vac. Science and Technology Google Scholar
14 Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., and Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
15 Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chern, C. S., Kroll, W., Stall, R. A., Li, Y., Schurman, M., Hwang, C.-Y., Mayo, W. E., Lu, Y., Pearton, S. J., Krishnankutty, S., and Kolbas, R. M., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
16 Hersee, S. D., Ramer, J., Zheng, K., Kranenberg, C., Malloy, K., Banas, M., and Goorsky, M., J. Elec. Mat. 24, 1519 (1995).Google Scholar
17 Patel, K. K. and Sealy, B. J., Appl. Phys. Lett. 48 1467 (1986).Google Scholar
18 Sherwin, M. E., Zolper, J. C., Baca, A. G., Drummond, T. J., Shul, R. J., Howard, A. J., Rieger, D. J., P Schneider, R., and Klem, J. F., J. Elec. Mater. 15, 809 (1994).Google Scholar
19 Zolper, J. C., Baca, A. G., Sherwin, M. E., and Shul, R. J., Elec. Letts. 31, 923 (1995).Google Scholar
20 Molnar, R. J., Lei, T., and Moustakas, T. D., Appl. Phys. Lett. 62 72 (1993).Google Scholar
21 Kim, J. G., Frenkel, A. C., Liu, H., and Park, R. M., Appl. Phys. Lett. 65, 91 (1994).Google Scholar
22 Zolper, J. C., Hagerott Crawford, M., Howard, A. J., Ramer, J., and Hersee, S. D., Appl. Phys. Lett., to be pubished, January 8 1996.Google Scholar