Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:38:29.708Z Has data issue: false hasContentIssue false

Ion Channeling in Elastically Strained Superlattices*

Published online by Cambridge University Press:  22 February 2011

John H. Barrett*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

A review is given of the channeling behavior observed in superlattice materials. Elastic strains within the layers have been shown to be the source of the unusual ion dechanneling observed originally in InAs/GaSb and since observed in several other semiconductor superlattices. These strains occur because of the slight mismatch between the lattice constants of the two materials and cause the rows and planes of atoms in the crystal that are inclined to the surface normal to have small directional misalignments at the interfaces between the layers. The effects of these misalignments have been studied by computer simulations of ion trajectories in the crystal and shown to account in a reasonable manner for the observed dechanneling behavior. Calculations have been done as a function of the amount of misalignment to give an indication of how much dechanneling might be expected in other superlattices formed of any pair of materials that have slight mismatches. Various ways of measuring the amount of misalignment have also been studied by simulations and experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation.

References

REFERENCES

1. Esaki, L. and Tsu, R., IBM J. Res. Dev. 14, 61 (1970).Google Scholar
2. Osbourne, G. C., these proceedings.Google Scholar
3. Saris, F. W., Chu, W.-K., Chang, C.-A., Ludecke, R., and Esaki, L., Appl. Phys. Lett. 37, 931 (1980).CrossRefGoogle Scholar
4. Chu, W.-K., Saris, F. W., Chang, C.-A., Ludecke, R., and Esaki, L., Phys. Rev. B 26, 1999 (1982).Google Scholar
5. Barrett, John H., Appl. Phys. Lett. 40, 482 (1982).CrossRefGoogle Scholar
6. Barrett, John H., J. Vac. Sci. Technol. 21, 384 (1982).CrossRefGoogle Scholar
7. Appleton, B. R. and Chu, W.-K. (unpublished).Google Scholar
8. Barrett, John H., Phys. Rev. B 28, 2328 (1983).CrossRefGoogle Scholar
9. Chang, C.-A. and Chu, W.-K., Appl. Phys. Lett. 42, 463 (1983).Google Scholar
10. Chu, W.-K., Pan, C.-K., and Chang, C.-A., Phys. Rev. B 28, 4033 (1983).CrossRefGoogle Scholar
11. Picraux, S. T., Dawson, L. R., Osbourn, G. C., and Chu, W.-K., Appl. Phys. Lett. (in press).Google Scholar
12. Picraux, S. T., Dawson, L. R., Osbourn, G. C., and Chu, W.-K., Nucl. Instr. Meth. (in press).Google Scholar
13. Chu, W.-K., Ellison, J. A., Picraux, S. T., Biefeld, R. M., and Osbourn, G. C., Nucl. Instr. Meth. (in press).Google Scholar
14. Picraux, S. T., Dawson, L. R., Osbourn, G. C., Biefeld, R. M., and Chu, W.-K., Appl. Phys. Lett. (in press).Google Scholar
15. Chu, W.-K., Picraux, S. T., Biefeld, R. M., Osbourn, G. C., and Ellison, J. A., these proceedings.Google Scholar
16. Picraux, S. T., Biefeld, R. M., Dawson, L. R., Osbourn, G. C., and Chu, W.-K., these proceedings.Google Scholar
17. Pan, C.-K., Zheng, D.-C., Chu, W.-K., and Chang, C.-A., these proceedings.Google Scholar
18. Matthews, J. W. in: Epitaxial Growth, Matthews, J. W., ed. (Academic Press, New York, 1975) Part B, pp. 559609.CrossRefGoogle Scholar
19. See, for instance, Kittel, Charles, Introduction to Solid State Physics, 4th ed., (Wiley, New York, 1971) ch. 4.Google Scholar
20. Matthews, J. W. and Blakeslee, A. E., J. Vac. Sci. Technol. 14, 989 (1977).CrossRefGoogle Scholar
21. Kyoshima, Akira, J. Phys. Soc. Japan 50, 2395 (1981).CrossRefGoogle Scholar
22. Williams, R. S., Paine, B. M., Schaffer, W. J., and Kowalczyk, S. P., J. Vac. Sci. Technol. 21, 386 (1982).CrossRefGoogle Scholar
23. CRC Handbook of Chemistry and Physics, 58th ed., Weast, Robert C., ed. (Chemical Rubber Co., Cleveland, 1977) p. E-101ff.Google Scholar
24. American Institute of Physics Handbook, 3rd ed., Gray, Dwight E., ed.(McGraw-Hill, New York, 1972) p. 973.Google Scholar
25. Andersen, J. U., Chechenin, N. G., and Hua, Zhang Zu, Appl. Phys. Lett. 39, 758 (1981).Google Scholar
26. Ellison, J. A., Phys. Rev. B 18, 5948 (1978).Google Scholar
27. See, for instance, Segmüller, A., Krishna, P., and Esaki, L., J. Appl. Cryst. 10, 1 (1977).Google Scholar