Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:48:32.239Z Has data issue: false hasContentIssue false

Ion Beam Induced Epitaxial Crystallization of Single Crystalline 6H-SiC

Published online by Cambridge University Press:  22 February 2011

V. Heera
Affiliation:
Research Center Rossendorf Inc., P.O.B. 510119, D-01314 Dresden, Germany
R. Kögler
Affiliation:
Research Center Rossendorf Inc., P.O.B. 510119, D-01314 Dresden, Germany
W. Skorupa
Affiliation:
Research Center Rossendorf Inc., P.O.B. 510119, D-01314 Dresden, Germany
E. Glaser
Affiliation:
FSU Jena, Institute of Solid State Physics, Max-Wien-Platz 1, D-07743 Jena, Germany
Get access

Abstract

For the first time, ion beam induced epitaxial crystallization (IBIEC) has been found in SiC. The effect of 300 keV Si+ irradiation through an amorphous surface layer in single crystalline 6H-SiC at 477±5°C has been investigated by RBS/C and XTEM. A shrinkage of the amorphous layer was found after ion irradiation at this temperature which is caused by both an ion dose independent thermal regrowth of about 20 nm and an additional ion beam induced epitaxial crystallization with a rate of about 1.5 nm/ 1016 cm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Davies, R. F. and Glass, J. T., Advances in Solid State Chemistry 2, 1 (1991).Google Scholar
2 Pensl, G. and Helbig, R., in Festkörperprobleme/ Advances in Solid State Physics, Vol. 30, ed. by Rössler, U. (Vieweg, Braunschweig 1990), pp. 133156.Google Scholar
3 Powell, J. A., Neudeck, P.G., Matus, L.G. and Petit, J.B., Mat. Res. Soc. Symp. Proc. 242, 495 (1992).Google Scholar
4 Cree Research, Inc., Durham, NC 27713, USAGoogle Scholar
5 Spitznagel, J.A., Wood, S., Choyke, W. J., Doyle, N.J., Bradshaw, J. and Fishman, S. G., Nucl. Instr. Meth. B16, 237 (1986)Google Scholar
6 Edmond, J. A., Withrow, S. P., Kong, H. S. and Davies, R. F., Mat. Res. Soc. Symp. Proc. 51, 395 (1986).Google Scholar
7 Ryu, J., Kim, H. J. and Davies, R. F., Mat. Res. Soc. Symp. Proc. 52, 165 (1986).Google Scholar
8 Bonn, H. G., Williams, J. M., McHargue, C. J. and Begun, G.M., J. Mater. Res. 2, 107 (1987).Google Scholar
9 McHargue, C. J. and Williams, J. M., Nucl. Instr. Meth. B80/81, 889 (1993).Google Scholar
10 Priolo, F. and Rimini, E., Mater. Sci. Rep. 5, 319 (1990).Google Scholar
11 Elliman, R.G., Ridgway, M.C., Williams, J. S. and Bean, J.C., Appl. Phys. Lett. 55, 843 (1989).Google Scholar
12 Johnson, S. T., Williams, J.S., Nygren, E. and Elliman, R.G., J. Appl. Phys. 64, 6567 (1988).Google Scholar
13 Williams, J. S., Ridgway, M.C., Elliman, R. G., Davies, J.A., Johnson, S.T. and Palmer, G. R., Nucl. Instr. Meth. B55, 602 (1991).Google Scholar
14 Zhou, W., Sood, D. K., Elliman, R. G. and Ridgway, M. C., Nucl. Instr. Meth. B80/81, 1104 (1993).Google Scholar
15 Kobayashi, N., Koboyashi, H. and Kumashiro, Y., Nucl. Instr. Meth. B40/41, 550 (1989).Google Scholar