Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:37:48.631Z Has data issue: false hasContentIssue false

Investigations of The Local Structure in Lithium Nickel Cobalt Oxide Cathode Materials

Published online by Cambridge University Press:  10 February 2011

S. Castro-Garcia
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogénes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
M. Massot
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogénes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
C. Julien
Affiliation:
Laboratoire des Milieux Désordonnés et Hétérogénes, UMR 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

We have studied the modifications of structural and physical properties which occur during delithiation of lithium-nickel-cobalt oxide cathode materials. Long-range and short-range orders have been investigated using XRD, Raman and FTIR spectroscopies. Different samples LixNi0.7Co0.3O2 (0.5≤x_≤1) were prepared by electrochemical lithium deintercalation from LixNi0.7Co0.3O2. Electrochemical extraction of lithium was carried out using Li/LiCIO4 in PC/LixNi0.7Co0.3O2 cells in the potentiometric method with potential step of 10 mV. During the first charge of the Li//LixNi0.7Co0.3O2 cell, the change in the cathode structure was followed by x-ray powder diffraction and vibrational spectroscopies at room temperature. A good correlation is found between XRD data and the local environment of the host lattice. Detailled analysis of vibrational spectra shows that the octahedral oxygen environment of Li+ ions remains stable in the investigated domain of concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dahn, J.R., Sacken, U. von, Juskow, M.W., and Al-Janabi, J., J. Electrochem. Soc. 138, 2207 (1991).Google Scholar
2. Delmas, C., Saadoune, I., and Rougier, A., J. Power Sources 43–44, 595 (1993).Google Scholar
3. Gummow, R.J., and Tackeray, M.M., Solid State lonics 53–56, 681 (1992).Google Scholar
4. Delmas, C., and Saadoune, I., Solid State lonics 53–56, 370 (1992).Google Scholar
5. Ohzuku, T., Ueda, A., Nagayama, M., Iwakoshi, Y., and Komori, H., Electrochim.Acta 38, 1159 (1993).Google Scholar
6. Delmas, C., Saadoune, I., and Rougier, A., J. Power Sources 43–44, 595 (1993).Google Scholar
7. Saadoune, I., and Delmas, C., J. Mater. Chem. 6, 193 (1996).Google Scholar
8. Rougier, A., Saadoune, I., Gravereau, P., Willmann, P., and Delmas, C., Solid State lonics 90, 83 (1996).Google Scholar
9. Julien, C., Massot, M., Perez-Vicente, C., Haro-Poniatowski, E., Nazri, G.A., and Rougier, A., Mater. Res. Soc. Symp. Proc. 496, 415 (1998).Google Scholar
10. Rougier, A., Nazri, G.A., and Julien, C., Ionics 3, 170 (1997).Google Scholar
11. Nazri, M., Curtis, M.D., Yebka, B., Nazri, G.A., and Julien, C., Ext. Abstr. of 193rd Meeting of The Electrochem. Soc., San Diego, CA (May 3-8, 1998), vol. 98–1, Abstr. No. 48.Google Scholar
12. Reimers, J.N., and Dahn, J.R., J. Electrochem. Soc. 139, 2091 (1992).Google Scholar
13. Saadoune, I., Menetrier, M., and Delmas, C., J. Mater. Chem. 7, 2505, (1997).Google Scholar
14. Shannon, R.D., and Prewitt, C.T., Acta Cryst. B 25, 925 (1969).Google Scholar
15. Moore, R.K., and White, W.B., J. Am. Ceramic Soc. 53, 679 (1970).Google Scholar
16. Marichal, C., Hirschinger, J., Granger, P., Menetrier, M., Rougier, A., and Delmas, C., Inorg. Chem. 34, 1773 (1995).Google Scholar