No CrossRef data available.
Article contents
Investigations of Bonding in Skutterudites by Electron Energy-Loss Spectroscopy
Published online by Cambridge University Press: 01 February 2011
Abstract
The local electronic structure of phosphorus in the binary skutterudites CoP3 and NiP3, and in the filled skutterudite LaFe4P12 are studied using a combination of electron energy-loss spectroscopy and ab initio calculations. Relative to CoP3 we observe a filling of phosphorus s and d states in NiP3, while for LaFe4P12 increased EELS intensity indicates more empty s and d states close to the Fermi-level.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1044: Symposium U – Thermoelectric Power Generation , 2007 , 1044-U06-22
- Copyright
- Copyright © Materials Research Society 2008
References
[1] Keast, V. J., Scott, A. J., Brydson, R., Williams, D. B., and Bruley, J.. Electron energy-loss near-edge structure – a tool for the investigation of electronic structure on the nanometer scale. J. Microsc.
203, 135 (2001).Google Scholar
[2] Anno, H., Matsubara, K., Caillat, T., and Fleurial, J.-P.. Valence-band structure of the skutterudite compounds CoAs3, CoSb3, and RhSb3 studied by x-ray photoelectron spectroscopy. Phys. Rev. B
62, 10737 (2000).Google Scholar
[3] Grosvenor, A. P., Cavell, R. G., and Mar, A.. X-ray Photoelectron Spectroscopy Study of Rare-Earth Filled Skutterudites LaFe 4 P 12 and CeFe 4 P 12
. Chem. Mater.
18, 1650 (2006).Google Scholar
[4] Grosvenor, A. P., Cavell, R. G., and Mar, A.. X-ray photoelectron spectroscopy study of the skutterudites LaFe 4 Sb 12, CeFe 4 Sb 12, CoSb 3, and CoP 3
. Phys. Rev. B
74, 125102 (2006).Google Scholar
[5] Diplas, S., Prytz, ø., Karlsen, O. B., Watts, J. F., and TaftÕ, J.. A quantitative study of valence electron transfer in the skutterudite compound CoP 3 by combining x-ray induced Auger and photoelectron spectroscopy. J. Phys.: Cond. Mat.
19, 246216 (2007).Google Scholar
[6] Prytz, ø., TaftÕ, J., Ahn, C. C., and Fultz, B.. Transition metal d-band occupancy in skutterudites studied by electron energy-loss spectroscopy. Phys. Rev. B
75, 125109 (2007).Google Scholar
[7] Prytz, ø., Sæterli, R., Løvvik, O. M., and Taftø, J.. Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: an electron energy loss study. Micron ( In press 2007).Google Scholar
[8] Leapman, R. D., Grunes, L. A., and Fejes, P. L.. Study of the L 23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B
26, 614 (1982).Google Scholar
[9] Onida, G., Reining, L., and Rubio, A.. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys.
74, 601 (2002).Google Scholar
[10] Rehr, J. J., Albers, R. C.. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys
72, 621 (2000).Google Scholar
[11] Ankudinov, A. L., Ravel, B., Rehr, J. J., and Conradson, S. D.. Real-space multiple scattering calculation and interpretation of x-ray-absorbtion near-edge structure. Phys. Rev. B
58, 7565 (1998).Google Scholar
[12] Moreno, M. S., Jorissen, K., Rehr, J. J.. Practical aspects of electron energy-loss spectroscopy(EELS) calculations using FEFF8. Micron
38, 1 (2007).Google Scholar
[13] Dudkin, L. D.. The chemical bond in semiconducting cobalt triantimonide. Soviet Physics –Tech. Phys.
3, 216 (1958).Google Scholar