Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T07:00:33.287Z Has data issue: false hasContentIssue false

Investigation of the valence band structure of PbSe by optical and transport measurement

Published online by Cambridge University Press:  15 February 2013

Thomas C. Chasapis
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, U.S.A.
Yeseul Lee
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, U.S.A.
Georgios S. Polymeris
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Eleni C. Stefanaki
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Euripides Hatzikraniotis
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Xiaoyuan Zhou
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Konstantinos M. Paraskevopoulos
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, U.S.A.
Get access

Abstract

We investigated the valence band structure of PbSe by a combined study of the optical and transport properties of p-type Pb1-xNaxSe, with Na concentrations ranging from 0 – 4%, yielding carrier densities in a wide range of 1018 – 1020 cm−3. Room temperature infrared reflectivity studies showed that the susceptibility (or conductivity) effective mass m* increases from ∼ 0.06mo to ∼ 0.5mo on increasing Na content from 0.08% to 3%. The Seebeck coefficient scales with doping in the whole temperature range, yielding lower values for higher Na contents, while the Hall coefficient increases on heating from room temperature showing a peak close to 650 K. The room temperature Pisarenko plot is well described by the simple parabolic band model up to ∼ 1·1020 cm−3. In order to describe the behaviour in the whole concentration range, the application of the two band model, i.e. light hole and heavy hole, was used giving density of states effective masses 0.28mo and 2.5mo for the two bands respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Peng, H., Song, J-H., Kanatzidis, M.G. and Freeman, A.J., Phys. Rev. B, 84, 125207 (2010).CrossRefGoogle Scholar
Androulakis, J., Chung, D.Y., Su, X. and Zhang, L., Uher, C., Hasapis, T.C., Hatzikraniotis, E., and Paraskevopoulos, K.M., Kanatzidis, M.G., Phys. Rev. B, 84, 155207 (2011).CrossRefGoogle Scholar
Androulakis, J., Todorov, I., He, JQ., Chung, D.Y., Dravid, V., Kanatzidis, M.G., J. Am. Chem. Soc., 133, 10920 (2011).CrossRefGoogle Scholar
Androulakis, J., Lee, Y., Todorov, I., Chung, D.Y., Kanatzidis, M.G., Phys. Rev. B, 83, 195209 (2011).CrossRefGoogle Scholar
Parker, D. and Singh, D.J., Phys. Rev. B, 82, 035204 (2010).CrossRefGoogle Scholar
Wang, H., Pei, Y., LaLonde, AD. and Snyder, G.J., Adv. Mater., 23, 1366 (2011).CrossRefGoogle Scholar
Zhang, Q., Cao, F., Liu, W., Lukas, K., Yu, Bo, Chen, S., Opeil, C., Broido, D., Chen, G. and Ren, Z., J. Am. Chem. Soc., 134, 10031 (2012).CrossRefGoogle Scholar
Kukharskii, A. A., Solid State Commun. 13, 1761 (1973).CrossRefGoogle Scholar
Tauber, R.N. and Cadoff, I.B., J. Appl. Phys., 38, 3714 (1967).CrossRefGoogle Scholar
Hamberg, I. and Granqvist, C. G., Berggren, K.-F., Sernelius, B.E., and Engstrom, L., Phys. Rev. B, 30, 3240 (1984).CrossRefGoogle Scholar
Veis, A.N., Kuteinikov, R.F., Kumzerov, S.A., and Ukhanov, Yu. I., Sov. Phys. Semicond., 10, 1320 (1976).Google Scholar
Heremans, J.P., Wiendlocha, B. and Chamoire, A. M., Energy Environ. Sci., 5, 5510 (2012).CrossRefGoogle Scholar
Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L. and Snyder, G.J., Nature, 473, 66 (2011).CrossRefGoogle Scholar
Allgaier, R. S., J. Appl. Phys., 36, 2429 (1965).CrossRefGoogle Scholar
Androulakis, J., Todorov, I. and Chung, D.Y., Ballikaya, S., Wang, G. and Uher, C., Kanatzidis, M.G., Phys. Rev. B., 82, 115209 (2010).CrossRefGoogle Scholar
Ravich, Yu.I., Efimova, B.A. and Smirnov, I.A, “Semiconducting Lead Chalcogenides”, ed. Still’bans L.S. (Plenum Press, 1970) p. 157.CrossRefGoogle Scholar