Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T13:52:11.018Z Has data issue: false hasContentIssue false

Investigation of the Redox Behavior of Technetium in Borosilicate Glass Melts by Voltammetry

Published online by Cambridge University Press:  26 February 2011

E. Freude
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100. D-IOOO Berlin 39
W. Lutze
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Glienicker Str. 100. D-IOOO Berlin 39
C. Rüssel
Affiliation:
Univ. Erlangen. Inst, für Werkstoffwissenschaften III, Martensstraβe 5, D-8520, Erlangen
H. A. Schaeffer
Affiliation:
Deutsche Glastechnische Gesellschaft e.V‥ Mendelssonstraβe 75, D-6000 Frankfurt 1
Get access

Abstract

Technetium is a potentially hazardous radionuclide in the waste vitrification process as its oxides are volatile. Electrochemical measurements, i.e. potentiometry and voltammetry are applied to investigate the redox reactions of Tc in the glass melt. Re is studied for comparison. Under normal oxidizing conditions Tc is in the -T-state, and substancial losses of Tc occur as a result of compound volatility. Reducing conditions lead to the formation of TcO2, which precipitates from the melt. Stronger reducing conditions lead to the formation of metallic Tc

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gmelin Handbook of Inorganic Chemistry. 8th ed., Technetium, Verlag Chemie GmbH. Weinheim/Bergstr., 1982 Google Scholar
2. Bibler, N. E.. Jurgensen, A. R., in Scientific Basis for Nuclear Waste Management XI, edited by Apted, M. J. and Westerman, R. E.. (Materials Research Society, Pittsburg, PA. 1987), p. 585593 Google Scholar
3. Antonini, M.. Merlini, E.. Thornley, R. F., J. Non-Cryst. Solids 71 (1985) 219225 CrossRefGoogle Scholar
4. Lammertz, H., Merz, E., Halaszovichi, S. in Scientific Basis for Nuclear Waste Management VIII, edited by Jantzen, C. M.. Stone, J. A. and Ewing, R. C.. (Materials Research Society. Pittsburg. PA, 1985), p. 823829 Google Scholar
5. Baumgartner, F., Krebs, K.. Merte, B., Report DP-TR—90 (1984)Google Scholar
6. Bradley, D. J.. Harvey, C. O.. Turcotte, R. P., Report PNL-3152Google Scholar
7. Migge, H., this conferenceGoogle Scholar
8. Antonini, M., Merlini, E., Thornley, R. F., in EXAFS and Near Edge Structure III, edited by Hodgson, K., Hedman, B., Penner-Hahn, J., (Springer Verlag, NY. 1984)Google Scholar
9. Frey, T., Schaeffer, H. A.. Bauke, F. K., Glastechn. Ber. 53, (1980) 116123 Google Scholar
10. Schreiber, H. D., J. Non-Cryst. Solids 84 (1986) 129141 CrossRefGoogle Scholar
11. Kohl, R., Rüssel, C., Schaeffer, H. A., submitted to Glastechn. Ber.Google Scholar
12. Henze, G., Neeb, R., Elektrochemische Analytik, (Springer Verlag, Berlin, 1986)CrossRefGoogle Scholar
13. Takahashi, K., Miura, Y., J. Non-Cryst. Solids 38&39 (1980) 527532 Google Scholar
14. Freude, E., Rüssel, C., Glastechn. Ber. 60 (1987) 202204 Google Scholar
15. Osteryoung, J., O'Dea, J. J., in Electroanalytical Chemistry, Vol. 14, edited by Bard, A. J., (Marcel Dekker, NY, 1986)Google Scholar
16. Montéi, C., Rüssel, C., Freude, E., Glastechn. Ber. 61, (1988) 5963 Google Scholar
17. Keller, C., Kanellakopulos, B., J. Inorg. Nucl. Chem. 21 (1965) 787795 CrossRefGoogle Scholar
18. Donten, M.. Stojek, Z.. Küblik, Z., J. Electroanal. Chem. 163, (1984) 1121 Google Scholar