Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T03:46:14.557Z Has data issue: false hasContentIssue false

Investigation of the Mechanism of the Enhanced Z3DT in PbTe Based Superlattices

Published online by Cambridge University Press:  10 February 2011

T. Koga
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
T. C. Harman
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420
X. Sun
Affiliation:
Department of PhysicsCambridge, MA 02139
S. B. Cronin
Affiliation:
Department of PhysicsCambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Department of PhysicsCambridge, MA 02139 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Various possible mechanisms for the recently discovered enhanced Seebeck coefficient S in PbTe/Te superlattices relative to the corresponding PbTe bulk are investigated. Among the various mechanisms which can account for the enhanced S, the energy dependent τ model (τ ∼ ɛr) seems the most plausible. Here the effective scattering parameter r is preferably increased due to the extra scattering by the periodic Te layers introduced in the superlattice. Other transport properties including the longitudinal magnetoresistance are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993); L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993);Google Scholar
[2] Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mater. 25, 1121 (1996); L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Phys. Rev. B, R10493 (1996); T. C. Harman, D. L. Spears, D. R. Calawa, S. H. Groves, and M. P. Walsh, Proceedings for 16th International Conference on Thermoelectrics page 416 (1997).CrossRefGoogle Scholar
[3] Harman, T. C., Spears, D. L., and Walsh, M. P., Abstract for the 40th Electronic Materials Conf., Charlottesville, J. Electron. Mater. 27, No. 7, 44 (1998); T. C. Harman, D. L. Spears, and M. P. Walsh, J. Electron. Mater. Lett. 28, LI (1999).Google Scholar
[4] Koga, T., Sun, X., Cronin, S. B. and Dresselhaus, M. S., Appl. Phys. Lett. 73, 2950 (1998).CrossRefGoogle Scholar
[5] Sofo, J. O. and Mahan, G. D., Appl. Phys. Lett. 65, 2690 (1994);D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 67, 100 (1995); D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 67, 1170 (1995); P. J. Lin-Chung and T. L. Reinecke, Phys. Rev. B51, 13244 (1995); D. L. Broido and T. L. Reinecke, Phys. Rev. B 51, 13797 (1995); D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 70, 2834 (1997);CrossRefGoogle Scholar
[6] Rowe, D. M. and Min, G., Proceedings for 13th International Conference on Thermoelectrics page 339 (1994).Google Scholar
[7] Nishio, Y. and Hirano, T., Jpn. J. Appl. Phys., Part 1 36, 170 (1997).Google Scholar
[8] Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., and El-Masry, N., Journal of Crystal Growth 170, 817 (1997).CrossRefGoogle Scholar