Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:35:54.023Z Has data issue: false hasContentIssue false

Investigation of Resistivity Distributions in CdTe Crystals by Time Dependent Charge Measurements (TDCM)

Published online by Cambridge University Press:  26 February 2011

C. Eiche
Affiliation:
Kristallographisches Institut, University of Freiburg, Freiburg, Germany
W. Joerger
Affiliation:
Kristallographisches Institut, University of Freiburg, Freiburg, Germany
M. Fiederle
Affiliation:
Freiburger Materialforschungszentrum (FMF), University of Freiburg, Freiburg, Germany
R. Schwarz
Affiliation:
Kristallographisches Institut, University of Freiburg, Freiburg, Germany
M. Salk
Affiliation:
Kristallographisches Institut, University of Freiburg, Freiburg, Germany
D. G. Ebling
Affiliation:
Freiburger Materialforschungszentrum (FMF), University of Freiburg, Freiburg, Germany
K. W. Benz
Affiliation:
Kristallographisches Institut, University of Freiburg, Freiburg, Germany
Get access

Abstract

Spatially resolved resistivity measurements of CdTe crystals doped with Titanium (Ti) and Vanadium (V) were performed. From the temperature dependence of the resistivity the spatial variation of the thermal activation energy was deduced. Variations in axial as well as radial direction were observed and qualitatively explained by a combined segregation and compensation model. It is based on the deep donor levels of Ti and V at 0.95 eV below the conduction band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Partovi, A., Millerd, J., Garmire, E.M., Ziari, M, Steier, W.H., Trivedi, S.B. and Klein, M.B., Appl. Phys. Lett. 57, 846 (1990).Google Scholar
2. Stibal, R., Windscheif, J. and Jantz, W., Semicond. Sci. Technol. 6, 995 (1991).Google Scholar
3. Triboulet, R., Rev. Phys. Appl. 12, 123 (1977).Google Scholar
4. Schwarz, R., Joerger, W., Eiche, C., Fiederle, M and Benz, K.W., J. Cryst. Growth. 146, 92 (1995).Google Scholar
5. Eiche, C., Joerger, W., Fiederle, M, Ebling, D., Schwarz, R. and Benz, K.W., Opt. Mater. 4, 214 (1995).Google Scholar
6. Bremond, G., Zerrai, A., Marrakchi, G., Aoudia, A., Marfaing, Y., Triboulet, R., Busch, M.C., Koebbel, J.M, Hage-Ali, M., Siffert, P. and Moisan, J.Y., Opt. Mater. 4, 146 (1995).Google Scholar
7. Pfann, W. G., in Zone Melting (John Wiley, New York, 1966).Google Scholar
8. Tiller, W. A., Jackson, K. A., Rutter, J.W. and Chalmers, B., Acta Metall. 1, 428 (1953).Google Scholar
9. Johnson, E.J., Kafalas, J.A. and Davies, R.W., J. Appl. Phys. 54, 204 (1982).Google Scholar
10. Eiche, C., Joerger, W., Fiederle, M, Ebling, D., Schwarz, R. and Benz, K.W., J. Cryst. Growth 146, 98 (1995).Google Scholar