Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T10:06:38.634Z Has data issue: false hasContentIssue false

Investigation of Near-IR Emission from Hydrogenated Nanocrystalline Silicon – The Oxygen Defect Band

Published online by Cambridge University Press:  01 February 2011

Jeremy David Fields
Affiliation:
[email protected]@mymail.mines.edu
Craig Taylor
Affiliation:
[email protected], Colorado School of Mines, Physics, Golden, Colorado, United States
David Bobela
Affiliation:
[email protected], National Renewable Energy Laboratory, Golden, Colorado, United States
Baojie Yan
Affiliation:
[email protected], United Solar Ovonic LLC, R&D, Troy, Michigan, United States
Guozhen Yue
Affiliation:
[email protected], United Solar Ovonic LLC, 1100 West Maple Road, Troy, Michigan, 48084, United States, (248) 519-5317, (248) 362-4442
Get access

Abstract

Hydrogenated nanocrystalline silicon (nc-Si:H), a mixture of nanometer sized crystallites and amorphous silicon tissue, demonstrates a photoluminescence band centered at ∼ 0.7 eV, which emerges in response to annealing at an onset temperature of ∼ 200–300 °C. This temperature range correlates well with hydrogen effusion spectroscopy studies, and evidence suggests thermal liberation of hydrogen from grain boundary regions allows oxidation of crystallite surfaces during annealing. We tentatively attribute the 0.7 eV PL in nc-Si:H to deep donor defect states related to oxygen precipitates, and argue for the possible involvement of dislocations inside of crystallites to accompany these precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fuller, C.S., Ditzenberger, J.A., Hannay, N.B., and Buehler, E., Acta Metallurgica, 3, 97 (1955).Google Scholar
2 Morimoto, A., Matsumoto, M., Yoshita, M., Kumeda, M., Shimizu, T., Appl. Phys. Lett. 59, 2130 (1991).Google Scholar
3 Kamei, T., Wada, T., and Matsuda, A., 28th IEEE Photovoltaic Spec. Conf. (2000) p.784 Google Scholar
4 Dalal, V. and Sharma, P., Appl. Phys. Letts. 86, 103510 (2005)Google Scholar
5 Michel, J. and Kimerling, L., Oxygen in Silicon, ed. Shimura, F., Academic Press (1994)Google Scholar
6 Borghesi, A., Pivac, B., Sassella, A., and Stella, A., J. Appl. Phys. 77, 4169 (1995)Google Scholar
7 Claeys, C., Simoen, E., and Vanhellemont, J., J. Phys. III France 7, 1469 (1997)Google Scholar
8 Tajima, M., J. of Crystal Growth 103, 17 (1990)Google Scholar
9 Kiriluk, K.G., Williamson, D.L., Bobela, D.C., Taylor, P.C., Yan, B., Yang, J., Guha, S., Madan, A., Zhu, F., MRS Symp. Proc. (2010) published in present proceedingsGoogle Scholar
10 Fields, J. D., Taylor, P. C., Radziszewski, J. G., Baker, D. A., Yue, G., and Yan, B., MRS Symp. Proc. 1153, 3 (2009)Google Scholar
11 Merdzhanova, T., Carius, R., Klein, S., Finger, F., Dimova-Malinovska, D., Thin Solid Films 511–512, 394 (2006)Google Scholar
12 Ostapenko, S.S., Savchuk, A.U., Nowak, G., Lagowski, J., Jastrzebski, L., Materials Science Forum 196–201, 1897 (1995)Google Scholar
13 Kakelios, J., Carter, C.B., and Perrey, C., Private communicationGoogle Scholar