No CrossRef data available.
Published online by Cambridge University Press: 23 April 2012
The nanoscale physical properties of newly electrospun polyamide nanofibrillar matrices < 1 year old versus those that were > 3 year old were investigated with transmission electron microscopy, selected area electron diffraction, contact angle measurements, and Raman spectroscopy. Significant differences in crystallinity, hydrophobicity, and chemistry were found and correspondingly different cell responses by cerebellar granular neurons were observed. The properties of the aged nanofibrillar scaffolds evoked a response for neuron burrowing into a more 3-dimensional environment in addition to better facilitation of neurite outgrowth. The nanophysical properties of tissue scaffolds have been recently shown to directly and indirectly regulate cellular responses. As physical properties can evolve over time, the present investigation addresses the issue of tissue scaffold shelf life, with possible changes in directive signals to cells.