Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T09:27:43.099Z Has data issue: false hasContentIssue false

Investigation of Lead Iodide Crystals for Use as High Energy Solid State Radiation Detectors

Published online by Cambridge University Press:  21 February 2011

Dominique C. David
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
R. B. James
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
H. Feemster
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
R. Anderson
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
A. J. Antolak
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
D.H. Morse
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
A. E. Pontau
Affiliation:
Sandia National Laboratories, Livermore, CA 94450
H. Jayatirtha
Affiliation:
Fisk University, Nashville, TN 37208
A. Burger
Affiliation:
Fisk University, Nashville, TN 37208
X. J. Bao
Affiliation:
TN Technologies, Round Rock, TX 78664
T. E. Sch-Lesinger
Affiliation:
Carnegie Mellon University, Pittsburgh, PA 15213
G. S. Bench
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94450
D. W. Heikkinen
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94450
Get access

Abstract

Significant developments have occurred in the technology of room-temperature PbI2 nuclear sensors which lead to some improvements in the detection of high energy gamma-rays. Discussion of crystal growth, purification, monitoring purification, and detector processing are reviewed as they relate to device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lund, J. C., Shah, K. S., Squillante, M. R., and Sinclair, F., IEEE Trans. Nuel. Sci. NS–35(1988) 89.CrossRefGoogle Scholar
2. Roth, S. and Willing, W. R., Appl. Phys. Lett. 18, (1971) 328.CrossRefGoogle Scholar
3. Lund, J. C., Shah, K. S., Squillante, M. R., Moy, L.P., Sinclair, F. and Entine, G., Nucl. Instr. and Meth. A283 (1989) 299.CrossRefGoogle Scholar
4. Zhang, J., Shah, K. S., Olschner, F., Lund, J. C., Moy, L. P., Daley, K., Cirignano, L. and Squillante, M. R., Nucl. Instr. and Meth. A322 (1992) 499.CrossRefGoogle Scholar
5. David, D. C., Burger, A., Wang, W., James, R. B., Schlesinger, T. E., and Lund, J. C., SPIE Conf. Vol. 1734 (1992).Google Scholar
6. Chu, C. C., Chen, P. Y. and Yang, M. H., Analyst, Vol. 115 (1990) 29.CrossRefGoogle Scholar
7. Boss, Charles B. and Fredeen, Kenneth J., in Concepts. Instrumentation. and Technique in Inductively Coupled Plasma Atomic Emission Spectroscopy, (Perkin Elmer, Norwalk, CT, 1989).Google Scholar
8. Johansson, S. A. E. and Campbell, J. L., PIXE - A Novel Technique for Elemental Analysis, (John Wiley and Sons, Chichestter, 1988).Google Scholar
9. Bench, G.S. and Antolak, A.J., Analysis of HgI2 and PbI2 crystals and detectors by Particle Induced X-Ray Emission(PIXE) and Ion Backscattering Spectroscopy (IBS), presented at the 1993 MRS Spring Meeting, San Francisco, CA, 1993 (unpublished).CrossRefGoogle Scholar
10. Gerrish, Vernon M., Characterization and Quantification of Detector Performance, EG&G Energy Measurements, Inc., Santa Barbara, CA (unpublished).Google Scholar