Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T20:38:52.114Z Has data issue: false hasContentIssue false

Investigation of Laser-Induced Etching of Ti in Phosphoric Acid

Published online by Cambridge University Press:  15 February 2011

R. J. Nowak
Affiliation:
BIAS Bremen Institute of Applied Beam Technology, Klagenfurterstr. 2, D-28359 Bremen, Germany
S. M. Metev
Affiliation:
BIAS Bremen Institute of Applied Beam Technology, Klagenfurterstr. 2, D-28359 Bremen, Germany
K. B. Meteva
Affiliation:
BIAS Bremen Institute of Applied Beam Technology, Klagenfurterstr. 2, D-28359 Bremen, Germany
G. Sepold
Affiliation:
BIAS Bremen Institute of Applied Beam Technology, Klagenfurterstr. 2, D-28359 Bremen, Germany
Get access

Abstract

Laser-induced chemical etching of Ti in phosphoric acid has been investigated using cw Nd:YAG (1.064 μιm) and Argon lasers (514 nm) operating in the fundamental Gaussian mode. Two different regions of etching were observed, which are separated by a characteristic threshold value of the laser power and ascribed to melting of the metal. Below the threshold an exponential dependence of etch rates on laser power suggest a thermally activated etching mechanism. Time-resolved measurements indicate in this region the dissolution of the passivation layer followed by surface etching of the metal grains. After laser illumination an immediate repassivation of the re-cooled surface stops the etch reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ehrlich, D. J., Tsao, J. Y., Appl. Phys. Lett. 43, 146(1983)Google Scholar
2 Miracky, R. F., Doss, K., Mater. Res. Soc. Symp. Proc. 101, 435(1983)Google Scholar
3 Donohue, T., in Laser Processing and Diagnostics, ed. by D. Bäuerle, Springer, Heidelberg 1984 Google Scholar
4 Gutfeld, R. J. von, Tynan, E. E., Melcher, R. L. and Blum, S. E., Appl. Phys. Lett. 35, 651(1979)Google Scholar
5 Gutfeld, R. J. von, Vigliotti, D. R., Datta, M., J. Appl. Phys. 64, 5197(1988)Google Scholar
6 Datta, M., Romankiw, L. T., Vigliotti, D. R., Gutfeld, R. J. von, Mater. Res. Soc. Symp. Proc. 101. 449(1988)Google Scholar
7 Nowak, R., Metev, S. and Sepold, G., in Excimer Lasers and New Trends in Laser Micro-technology ed. by Metev, S. and Sepold, G., Maisenbach, Bamberg 1993 Google Scholar
8 Nowak, R., Metev, S., Sepold, G., Mater. Manuf. Proc. 9, 429(1994)Google Scholar
9 Nowak, R., Metev, S., Sepold, G., SPIE 2207. 633(1994)Google Scholar
10 Nowak, R., Metev, S., Sepold, G., Sensors and Actuators A 50 (1996), in printGoogle Scholar
11 McAuliffe, Ch. A., Bricklebank, N., in Encyclopedia of Inorganic Chemistry, Vol. 8, ed. by King, R. B., Wiley Interscience, Chichester 1994, pp. 4205 Google Scholar
12 Clark, R. J. H., in Comprehensive Inorganic Chemistry, ed. by Bailar, J. C., Emeléus, H. J., Nyholm, R. and Trotman-Dickenson, A. F., Pergamon Press, Oxford 1983, pp. 355 Google Scholar
13 Hasenberg, L., in DECHEMA Corrosion Handbook, ed. by Kreysa, G. and Eckermann, R., Vol. 12, VCH, Weinheim 1993, pp. 273 Google Scholar
14 Shcherbakov, A. O., Andreeva, T. E., Prot. Met. 31, 20(1995), (translation ofZashch. Met.)Google Scholar
15 Lynch, D. W.; Olsen, C. G. Weaver, J. H., Phys. Rev. B 11 3617(1975)Google Scholar
16 Allmen, M. von, Laser-Beam Interaction with Materials, Springer, Heidelberg 1987, pp. 49 Google Scholar