Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:21:42.358Z Has data issue: false hasContentIssue false

Investigation of Ferroelectric Polymer Langmuir Film Properties

Published online by Cambridge University Press:  13 May 2015

Timothy J. Reece
Affiliation:
Department of Physics and Physical Science University of Nebraska at Kearney Kearney, NE 68849
Wyatt A. Behn
Affiliation:
Department of Physics and Physical Science University of Nebraska at Kearney Kearney, NE 68849
Adrián Sanabria-Díaz
Affiliation:
Department of Physics and Physical Science University of Nebraska at Kearney Kearney, NE 68849
Get access

Abstract

Thin films of Polyvinylidene Fluoride (PVDF) copolymers have been incorporated within ferroelectric field effect transistors, all organic thin film transistor devices (OTFTs), piezoelectric actuators, and recently proposed as the ferroelectric layer in a promising multiferroic tunnel junction configuration [1]. The properties of most of these devices would benefit from reduced thickness and better thickness control of the ferroelectric layer during device processing.

A proven means for fabricating ultrathin films of the PVDF copolymer is the Langmuir-Blodgett (LB) technique. This technique involves dissolving the polymer in a volatile solvent which is then dispersed dropwise onto a purified water subphase, leaving an ultrathin layer of the copolymer on the water surface. The ability to control the thickness on the molecular level is the most prominent feature of this technique.

In some early studies [2], the minimum thickness of these films was found to be about 5 Angstroms, or roughly the same thickness as the intermolecular spacing of the all-trans β phase for the ferroelectric polymers. Later studies have led to the fabrication of films composed of thicker transfer steps: ∼ 1.8 nm per deposition [3]. The discrepancy is likely explained by the nature of the VDF molecule: it is not an amphiphile.

In this study, we further investigate the properties of Langmuir films of ferroelectric copolymers and discuss the observation of an apparent monolayer phase transition based on abrupt changes observed in the compressibility of the films. The main goal of this project is to discover the extent to which the device properties (like transfer step thickness) of PVDF films can be modified through processing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Velev, J. P., Lopez-Encarnacion, J. M., Burton, J. D., and Tsymbal, E. Y., Phys. Rev. B, 85 125103 (2012).CrossRefGoogle Scholar
Bune, A.V., Fridkin, V. M., Ducharme, S., Blinov, L. M., and Palto, S. P., Nature (London), 391 874877 (1998).CrossRefGoogle Scholar
Bai, M., Sorokin, A. V., Thompson, D. W., Poulsen, M., Ducharme, S., Herzinger, C. M., Palto, S., Fridkin, V. M., Yudin, S. G., Savchenko, V. E., and Gribova, L. K., J. Appl. Phys., 95(7) 33723377 (2004).CrossRefGoogle Scholar
Furukawa, T., Date, M., Ohuchi, M., and Chiba, A., J. Appl. Phys., 56(5) 14811486 (1984).CrossRefGoogle Scholar
Konno, A., Shiga, K., Suzuki, H., Koda, T., and Ikeda, S., Jap. J. Appl. Phys., 39 (9B) 56765678 (2000).CrossRefGoogle Scholar
Ducharme, S., Reece, T. J., Othon, C. M., and Rannow, R. K., IEEE Trans. Dev. Mater. Reliab., 5(4) 720735 (2005).CrossRefGoogle Scholar
Yamauchi, N., Jap. J. Appl. Phys., Part 1 25 590 (1986).CrossRefGoogle Scholar
Reece, T. J., Ducharme, S., Sorokin, A. V., and Poulsen, M., Appl. Phys. Lett., 82(1) 142144 (2003).CrossRefGoogle Scholar
Gerber, A., Fitsilis, M., Waser, R., Reece, T. J., Rije, E., Ducharme, S., and Kohlstedt, H., J. Appl. Phys., 107 124119 (2010).CrossRefGoogle Scholar
Naber, R. C. G., Tanase, C., Blom, P. W. M., Gelinck, G. H., Marsman, A. W., Touwslager, F. J., Setayesh, S., and De Leeuw, D. M., Nature Mater., 4 243 (2005).CrossRefGoogle Scholar
Gelinck, G. H., Marsman, A. W., Touwslager, F. J., Setayesh, S., de Leeuw, D. M., Naber, R. C. G., and Blom, P. W. M., Appl. Phys. Lett., 87 092903 (2005).CrossRefGoogle Scholar
Chen, Q., Natale, D., Neese, B., Ren, K., Lin, M., Zhang, Q. M., Pattom, M., Wang, K. W., Fang, H., and Im, E., SPIE Electroactive Polymer Actuators and Devices, 6524 (2007).Google Scholar
Chu, B., Zhou, X., Ren, K., Neese, B., Lin, M., Wang, Q., Bauer, F., and Zhang, Q. M., Science, 313 (5785) 334336 (2006).CrossRefGoogle Scholar
Yuan, Y., Reece, T. J., Ducharme, S., Sharma, P., Gruverman, A., Yang, Y., and Huang, J., Nat. Mater. 11 (3) 296302 (2011).CrossRefGoogle Scholar
Barnes, G. T. and Gentle, I. R., Interfacial Science: An Introduction, 2nd ed. (Oxford University Press, Inc., New York, 2011) p. 123.Google Scholar
Furukawa, T., Phase Transitions 18 143 (1989).CrossRefGoogle Scholar