Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T11:30:50.233Z Has data issue: false hasContentIssue false

Investigation of Dead Layer Thickness in SrRuO3/Ba0.5Sr0.5TiO3/Au Thin Film Capacitors

Published online by Cambridge University Press:  21 March 2011

L. J. Sinnamon
Affiliation:
Department of Pure and Applied Physics Queen's University Belfast Belfast BT7 1NN
R. M. Bowman
Affiliation:
Department of Pure and Applied Physics Queen's University Belfast Belfast BT7 1NN
J. M. Gregg
Affiliation:
Department of Pure and Applied Physics Queen's University Belfast Belfast BT7 1NN
Get access

Abstract

Thin film capacitors with barium strontium titanate (BST) dielectric layers of 7.5 to 950 nm were fabricated by Pulsed Laser Deposition. XRD and EDX analyses confirmed a strongly oriented BST cubic perovskite phase with the desired cation stoichiometry. Room temperature frequency dispersion (ε100 kHz / ε100 Hz) for all capacitors was greater than 0.75. Absolute values for the dielectric constant were slightly lower than expected. This was attributed to the use of Au top electrodes since the same sample showed up to a threefold increase in dielectric constant when Pt was used in place of Au. Dielectric constant as a function of thicknesses greater than 70 nm, was fitted using the series capacitor model. The large interfacial parameter ratio di / εi of 0.40 ± 0.05 nm implied a significant dead-layer component within the capacitor structure. Modelled consideration of the dielectric behaviour for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/ ε against d at the dead layer thickness. For the SRO/BST/Au system studied, no anomaly was observed. Therefore, either (i) 7.5 nm is an upper limit for the total dead layer thickness in this system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Amanuma, K., Mori, T., Hase, T., Sakuma, T., Ochi, A., Miyasaka, Y., Jpn. J. Appl. Phys. 32, 4150 (1993).10.1143/JJAP.32.4150Google Scholar
2 Li, H., Si, W., West, A. D., Xi, X. X., Appl. Phys. Lett. 73, 464 (1998).Google Scholar
3 Bhide, V. G., Gonhalekar, R. T., Shringi, S. N., J. Appl. Phys. 36, 3825 (1965).10.1063/1.1713956Google Scholar
4 Teowee, G., Baertlein, C. D., Kneer, E. A., Boulton, J. M., Uhlmann, D. R., Integrated Ferroelectrics, 7 149 (1995).Google Scholar
5 Stolichnov, I., Tagantsev, A., Setter, N., Cross, J. S., Tsukada, M., Appl. Phys. Lett. 75, 1790 (1999).10.1063/1.124821Google Scholar
6 Choi, D., Kim, B., Son, S., Oh, S., Park, K., J. Appl. Phys. 86, 3347 (1999).10.1063/1.371212Google Scholar
7 Izuha, M., Abe, K., Fukushima, N., Jpn. J. Appl. Phys. 36, 5866 (1997).10.1143/JJAP.36.5866Google Scholar
8 Craciun, V., Singh, R. K., Appl. Phys. Lett. 76, 1932 (2000).10.1063/1.126216Google Scholar
9 Zhou, C., Newns, D. M., J. Appl. Phys. 82, 3081 (1997).10.1063/1.366147Google Scholar
10 Natori, K., Otani, D., Sano, N., Appl. Phys. Lett. 73, 632 (1998).10.1063/1.121930Google Scholar
11 Wurfel, P., Batra, I. P., Phys. Rev. B 8, 5126 (1973).10.1103/PhysRevB.8.5126Google Scholar
12 Wang, Y. G., Zhong, W. L., Zhang, P. L., Phys. Rev. B 51, 5311 (1995).10.1103/PhysRevB.51.5311Google Scholar
13 Vendik, O. G., Zubko, S. P., Ter-Martirosayn, L. T., Appl. Phys. Lett. 73, 37 (1998).10.1063/1.121715Google Scholar
14 Hwang, C. S., Lee, B. T., Kang, C. S., Lee, K. H., Cho, H., Hideki, H., Kim, W. D., Lee, S. I., Lee, M. Y., J. Appl. Phys. 85, 287 (1999)10.1063/1.369443Google Scholar
15 Paek, S., Won, J., Lee, K., Choi, J., Park, C., Jpn. J. Appl. Phys. 35, 5757 (1996).10.1143/JJAP.35.5757Google Scholar
16 Sakashita, Y., Segawa, H., Tominaga, K., Okada, M., J. Appl. Phys. 73, 7857 (1993).10.1063/1.353936Google Scholar
17 Jo, W., Kim, D. C., Lee, H. M., Kim, K. Y., J. Korean Phys. Soc. 34, 61 (1999).Google Scholar
18 Desu, S. B., Mat. Res. Soc. Symp. Proc. 541, 457 (1999).10.1557/PROC-541-457Google Scholar
19 Abe, K., Komatsu, S., Jpn. J. Appl. Phys. Pt 2 32, L1157 (1993).10.1143/JJAP.32.L1157Google Scholar
20 Basceri, C., Streiffer, S. K., Kingon, A. I., Waser, R., J. Appl. Phys. 82, 2497 (1997).10.1063/1.366062Google Scholar
21 Sirenko, A. A., Bernhard, C., Golnik, A., Clark, A. M., Hao, J., Si, W., Xi, X. X., Nature, 404, 373 (2000).10.1038/35006023Google Scholar
22 Nakamura, T., Yamanaka, Y., Morimoto, A., Shimizu, T., Jpn. J. Appl. Phys. 34, 5150 (1995).10.1143/JJAP.34.5150Google Scholar
23 Nagaraj, B., Sawhney, T., Perusse, S., Aggarwal, S., Ramesh, R., Kaushik, V. S., Zafar, S., Jones, R. E., Lee, J. H., Balu, V., Lee, J., Appl. Phys. Lett. 74, 3194 (1999).10.1063/1.124104Google Scholar
24 , Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series Group III: Crystal and Solid State Physics, Vol. 16(a), edited by Hellwege, K. H. (Springer-Verlag, 1981).Google Scholar
25 Lee, W., Park, I., Jang, G., Kim, H., Jpn. J. Appl. Phys. 34, 196 (1995).10.1143/JJAP.34.196Google Scholar
26 Izuha, M., Abe, K., Koike, M., Takeno, S., Fukushima, N., Appl. Phys. Lett. 70, 1405 (1997).10.1063/1.118590Google Scholar
27 Lee, W., Kim, H., Yoon, S., J. Appl. Phys. 80, 5891 (1996).10.1063/1.363583Google Scholar
28 Lee, J. J., Desu, S. B., Ferroelectric Letters, 20, 27 (1995).10.1080/07315179508204723Google Scholar
29 Yamamichi, S., Yabuta, H., Sakuma, T., Miyasaka, Y., Appl. Phys. Lett. 64, 1644 (1994).10.1063/1.111818Google Scholar
30 Ichnose, N., Ogiwara, T., Jpn. J. Appl. Phys. 34, 5198 (1995).10.1143/JJAP.34.5198Google Scholar