Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T08:04:34.292Z Has data issue: false hasContentIssue false

Investigation of Colloidal Si Prepared from Porous Silicon

Published online by Cambridge University Press:  25 February 2011

S. Berhane
Affiliation:
Department of ChemistryScience University of California Davis, CA 95616
S. M. Kauzlarich
Affiliation:
Department of ChemistryScience University of California Davis, CA 95616
K. Nishimura
Affiliation:
Departments of Electrical Engineering and Computer ScienceScience University of California Davis, CA 95616
R. L. Smith
Affiliation:
Departments of Electrical Engineering and Computer ScienceScience University of California Davis, CA 95616
J. E. Davis
Affiliation:
Department of Applied Science University of California Davis, CA 95616
H. W. H. Lee
Affiliation:
Lawrence Livermore National Laboratory Livermore, CA 94550
M. L. S. Olsen
Affiliation:
Lawrence Livermore National Laboratory Livermore, CA 94550
L.L. Chase
Affiliation:
Lawrence Livermore National Laboratory Livermore, CA 94550
Get access

Abstract

Si nanocrystallites have been prepared by ultrasonicating thin sections of porous silicon. The materials produced from 20 and 49 wt % HF are characterized and compared. Samples were characterized by optical absorption and photoluminescence spectroscopy, and HRTEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heinrich, J. L., Curtis, C. L., Credo, G. M., Kavanagh, K. L., Sailor, M. J., Science 255, 66 (1992).CrossRefGoogle Scholar
2. Prokes, S. M., J. Appl. Phys. 73, 407 (1993).CrossRefGoogle Scholar
3. Fuchs, H. D., Brandt, M. S., Stutzmann, M., J. Weber, Mater. Res. Soc. Symp. Proc. 256, 159 (1992).CrossRefGoogle Scholar
4. Sailor, M. J., Kavanagh, K. L., Advanced Materials 4, 432 (1992).CrossRefGoogle Scholar
5. Pillai, S. M., Xu, Z. Y., Gal, M., Glaisher, R., Phillips, M., Cockayne, D., Jpn. J. Appl. Phys. 31, L1702 (1992).CrossRefGoogle Scholar
6. Littau, K. A., Szajowshki, P. J., Muller, A. J., Kortan, A. R., Brus, L. E., J. Phys. Chem. 97, 1224 (1993).CrossRefGoogle Scholar
7. Wu, J. J., Flagan, R. C., J. Appl. Phys. 61, 1365 (1987).CrossRefGoogle Scholar
8. Hayashi, S., Tanimoto, S., Yamamoto, K., J. Appl. Phys. 68, 5300 (1990).CrossRefGoogle Scholar
9. Okada, R., Ijima, S., Appl. Phys. Lett. 58, 1662 (1991).CrossRefGoogle Scholar
10. Ijima, S., Jpn. J. Appl. Phys. 26, 357 (1987).CrossRefGoogle Scholar
11. Saito, Y., J. Cryst. Growth 47, 61 (1979).CrossRefGoogle Scholar
12. Heath, J. R., Science 258, 1131 (1992).CrossRefGoogle Scholar
13. Smith, R. L., Collins, S. D., J. Appl. Phys. 71, RI (1992).CrossRefGoogle Scholar
14. Herino, R., Bomchil, G., Barla, K., Bertrand, C., Ginous, J. L., J. Electrochem. Soc. 134, 1994 (1987).CrossRefGoogle Scholar
15. Bomchil, G., Herino, R., Barla, K., Pfister, J. C., J. Electrochem. Soc. 130, 1611 (1983).CrossRefGoogle Scholar
16. Saxton, W. O., Pitt, T. J., Horner, M., Ultramicroscopy 4, 343 (1979).CrossRefGoogle Scholar
17. Weiss, A., Beil, G., Meyer, H., Z. Naturforsch 34b, 25 (1979).Google Scholar
18. Terminello, L. J., Chase, L.L., Balooch, M., Berhane, S., Kauzlarich, S. M. unpublished, (1993).Google Scholar