Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:30:37.689Z Has data issue: false hasContentIssue false

Investigating Coherent Zone-Folded Acoustic Phonons in Si/SiGe Superlattices by Transient Thermoreflectance Technique

Published online by Cambridge University Press:  31 January 2011

Hélène Michel
Affiliation:
[email protected], University of California Santa cruz, Baskin School of Engineering, Santa cruz, California, United States
Gilles Pernot
Affiliation:
[email protected], Université de Bordeaux 1, CPMOH, Talence, France
Jean-Michel Rampnoux
Affiliation:
[email protected], Université de Bordeaux 1, CPMOH, Talence, France
Stefan Dilhaire
Affiliation:
[email protected], Université de Bordeaux 1, CPMOH, Talence, France
Stéphane Grauby
Affiliation:
[email protected], Université de Bordeaux 1, CPMOH, Talence, France
Younès Ezzahri
Affiliation:
[email protected], University of California Santa cruz, Baskin School of Engineering, Santa cruz, California, United States
Ali Shakouri
Affiliation:
[email protected], University of California Santa cruz, Baskin School of Engineering, Santa cruz, California, United States
Get access

Abstract

In this paper, we present a systematic study of coherent phonons in Si/SiGe superlattices with two different periods. The superlattice periodicity affects the acoustic properties of the structure. Transient thermoreflectance (TTR) technique is used to perform picosecond ultrasonics experiments and then, investigate coherent zone-folded acoustic phonons in different Si/SiGe superlattice structures. Several classes of coherent phonons are produced in the superlattice, whose generation mechanisms are different: Brillouin oscillations, coherent longitudinal-acoustic phonon Bragg reflection and impulsive stimulated Raman scattering (ISRS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tamura, S., Hurley, D. C. and Wolfe, J. P. Phys. Rev. B., 85, 316(1988)Google Scholar
2 Takeuchi, H. Mizoguchi, K. Hino, T. Nakayama, M. Physica B., 316-317, pp. 308310 (2002)Google Scholar
3 Bartels, A. Dekorsy, Thomas, Kurz, Heinrich, Köhler, Klaus, Phys. Rev. Lett., 65, 1044 (1999)Google Scholar
4 Brugger, H. Abstreiter, G. Jorke, H. Herzog, H. J. Kasper, E. Phys. Rev. B., 33, 5928 (1986)Google Scholar
5 Ezzahri, Y. Grauby, S. Rampnoux, J. M. Michel, H. Pernot, G. Claeys, W. Dilhaire, S. Rossignol, C. Zeng, G. Shakouri, A. Phys. Rev. B., 75, 195309(2007)Google Scholar
6 Colvard, C. Merlin, R., Klein, M. V. Gossard, A.C. Phys. Rev. Lett., 45, 298(1980)Google Scholar
7 Colvard, C. Gant, T. A. Klein, M. V. Merlin, R. Fischer, R. Morkoc, H. Gossard, A. C. Phys. Rev. B., 31, 2080(1985)Google Scholar
8 Jusserand, B. Paquet, D. Mollot, F. Alexandre, F. Roux, G. Le, Phys. Rev. B., 35, 2080 (1987)Google Scholar
9 Merlin, R. Solid State Communication, 102, 207(1997)Google Scholar
10 Bartels, A. Dekorsy, Thomas, Kurz, Heinrich, Köhler, Klaus Appl. Phys. Lett., 72, 2844 (1998)Google Scholar
11 Trigo, M. Eckhause, T. A. Reason, M. Goldman, R. S. Merlin, R. Appl. Phys. Lett. 97, 124301(2006)Google Scholar
12 Yan, Yong-Xin, Gamble, E. B. Jr , Nelson, K. A. J. Chem. Phys., 83(11), 5391(1985)Google Scholar
13 Silvestri, S. De. Fujimoto, J. G. Ippen, E. P. Gamble, E. B. Jr, Williams, L. R. Nelson, K. A. Chem. Phys. Lett., 116, 46(1995)Google Scholar
14 Thomsen, C. Grahn, H. T. Maris, H. J. Tauc, J. Phys. Rev. B., 34, 4129(1986)Google Scholar
15 Wright, O.B. J. Appl. Phys., 71, 1617(1992)Google Scholar
16 Liu, R. Sanders, G. D. Stanton, C. J. Kim, C. S. Yahng, J. S. Jho, Y. D. Yee, K. J. Oh, E. Kim, D. S. Phys. Rev. B., 72, 195335(2005)Google Scholar
17 Rytov, S. M. Sov. Phys. Acoust., 2, 68(1956)Google Scholar