Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T02:34:05.996Z Has data issue: false hasContentIssue false

Intrinsic and Extrinsic Size Effects in Plasticity by Dislocation Glide

Published online by Cambridge University Press:  21 March 2011

J. Gil Sevillano*
Affiliation:
CEIT (Centro de Estudios e Investigaciones Técnicas de Guípúzcoa) and Faculty of Engineering, University of Navarra. P.O. Box 1555, 20080 San Sebastián, Spain
Get access

Abstract

A classification of size effects (SE) in plasticity is attempted. ”Intrinsic” SE are perceived when any internal length scale directly influencing some process or property interferes with the size of the material region where the process is going on or when two internal length scales directly affecting the same process or property interfere. ”Extrinsic” SE arise from the external imposition of spatial gradients in the plastic process or by the building up of internal gradients by the (externally induced) process itself. In dislocation-mediated plasticity plastic strain gradients are resolved by the storage of geometrically necessary dislocations (GND) leading to prominent size effects. Of course, mixed effects with intrinsic and extrinsic contributions can be found as well as superposed effects involving more than two characteristic lengths (i.e., size effects on size effects).The inclusion of both types of SE in continuum or crystallographic theories is commented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyer, E., Verein D. Ing., 52, 645 (1908).Google Scholar
2. Morrison, J. M., Proc. Inst. Mech. Eng., 142, 193 (1939).Google Scholar
3. Griffith, A. A., Phil. Trans. R. Soc., A221, 163 (1920).Google Scholar
4. Fleck, N. A., Muller, G. M., Ashby, M. F. and Hutchinson, J. W., Acta Mater., 42, 475 (1994)Google Scholar
5. Nye, J. F., Acta Metall., 1, 153 (1953).10.1016/0001-6160(53)90054-6Google Scholar
6. Ashby, M. F., Philos. Mag., 21, 399 (1970).Google Scholar
7. Ashby, M. F., Strengthening Methods in Crystals, chap. 3. Kelly, A. and Nicholson, R. B., eds., Elsevier, Amsterdam, (1970).Google Scholar
8. Aifantis, E. C., J. Eng. Mater. Technol., 106, 326 (1984).Google Scholar
9. Aifantis, E. C., Material Instabilities in Solids, Borst, R. de and Giessen, E. van der, eds., p. 533. Wiley, New York (1998).Google Scholar
10. Nix, W. D. and Gao, H. J., J. Mech. Phys. Solids, 46, 411 (1998).Google Scholar
11. Fleck, N. A. and Hutchinson, J. W., Adv. Appl. Mech., 33, 295 (1997).Google Scholar
12. Acharya, A. and Bassani, J. L., Micromechanics of Plasticity and Damage of Multiphase Materials (IUTAM Symposium, Paris, 199), p. 3. Pineau, A., Zaoui, A., eds., Kluwer Academic publishers, Amsterdam (1996).Google Scholar
13. Forest, S., this volume.Google Scholar
14. Hutchinson, J., Int. J. Mech. Sci., 37, 225 (2000).Google Scholar
15. Hutchinson, J. and Evans, A. G., Acta Mater., 37, 125 (2000).Google Scholar
16. Needleman, A., Acta Mater., 37, 105 (2000).Google Scholar
17. Artz, E., Acta Mater., 46, 5611 (1998).Google Scholar
18. Gil Sevillano, J., Ocaña, I. and Kubin, L. P., Mater. Sci. Eng., in press..Google Scholar
19. Gil Sevillano, J., Matey Muñoz, L. and Flaquer Fuster, J., J. Phys. IV France, 8, Pr 4155 (1998).Google Scholar
20. Gil Sevillano, J, Phil. Trans. R. Soc. Lond.A, 357, 1603 (1999).Google Scholar
21. Stölken, J. S. and Evans, A. G., Acta Mater., 46, 5109 (1998).Google Scholar
22. Li, J. C. M. and Chou, Y. T., Metall. Trans., 1, 1145 (1970).Google Scholar
23. Al-Haidary, J. T., Petch, N. J. and de los Rios, E. R., Philos. Mag. A., 47, 869 (1983).Google Scholar
24. Al-Haidary, J. T., Petch, N. J. and de los Rios, E. R., Philos. Mag. A., 47, 891 (1983).Google Scholar
25. Gil Sevillano, J., Plastic Deformation and Fracture of Materials, chap. 2, p. 19. Mughrabi, H., ed. (vol. 6, Materials Science and Engineering. A Comprehensive Treatment, Cahn, R. W., Haasen, P. and Kramer, E. J., eds.). VCH, Weinheim, Germany (1993).Google Scholar
26. Badiola, V., Licence Thesis, Faculty of Engineering, University of Navarra, San Sebastian (Spain), 2000.Google Scholar
27. Acharya, A. and Shawki, T. G., J. Mech. Phis. Solids, 43, 1751 (1995)Google Scholar
28. Taylor, G. I., Timoshenko 60th Anniversary Volume, p. 218, Mac Millan, New York (1938).Google Scholar
29. Taylor, G. I., J. Inst. Met., 62, 307 (1938).Google Scholar
30. Bishop, J. F. W. and Hill, R., Philos. Mag., 42, 414 (1951).Google Scholar
31. Bishop, J. F. W. and Hill, R., Philos. Mag., 42, 1298 (1951).Google Scholar
32. Bishop, J. F. W., Philos. Mag., 44, 51 (1953).Google Scholar
33. Fivel, M. C., Robertson, C. F., Canova, G. R. and Boulanger, L., Acta Mater., 46, 6183 (1998).Google Scholar
34. Arsenlis, A. and Parks, D. M., Acta Mater., 47, 1597 (1999).Google Scholar
35. Humphreys, F. J., Dislocations and Properties of Real Materials, p. 175. The Institute of Metals, London (1985).Google Scholar
36. Shu, J. Y. and Fleck, N. A., J. Mech. Phys. Solids, 47, 297 (1999).Google Scholar
37. Godfrey, A. and Hughes, D.,Acta Mater., 48, 1897 (2000).Google Scholar