Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:37:35.366Z Has data issue: false hasContentIssue false

The Interrelationship Between Structure and Properties in InP and InGaAsP Materials

Published online by Cambridge University Press:  15 February 2011

S. Mahajan*
Affiliation:
Bell Laboratories, Murray Hill, NJ 7974
Get access

Abstract

Three examples pertaining to the influence of heavy doping on the microscopic perfection of as-grown InP crystals, thermal decomposition of InP crystals and epi-layers and optically induced degradation of InGaAsP epi-layers have been chosen to delineate some of the correlations observed between microstructure and properties in these materials. Itis shown that the macroscopic perfection can be significantly improved by highly doping with Zn, S, and Se. However, in the case of Zn, not all of the dopant atoms are in solid solution and some of them have clustered to form precipitates, whereas these features are not seen in highly S- and Se-doped crystals.

Thermal decomposition of epi-layers introduces areas which appear dark in a photoluminescence scan. It is argued that these regions evolve due to the out diffusion of P. In addition, when InP epi-layers are grown on thermally-decomposed substrates, dislocation density in the epi-layers is higher than that in the substrate. Arguments have been developed to rationalize these observations.

Non-luminescent regions develop in InGaAsP epilayers by optical pumping. These areas are associated with dislocation clusters which appear to evolve by glide of the existing dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horiguchi, M. and Osanai, H., Elec. Lett. 12, 310 (1976).CrossRefGoogle Scholar
2. Payne, D. N. and Gambling, W. A., Elec. Lett. 11, 176 (1976).Google Scholar
3. James, L. W., Antypas, G. A., Moon, R. L., Edgecombe, J. and Bell, R. L., Appl. Phys. Lett. 22, 270 (1973).Google Scholar
4. Shen, C. C., Hsieh, J. J. and Lind, T. A., Appl. Phys. Lett. 30, 353 (1977).CrossRefGoogle Scholar
5. Dentai, A. G., Lee, T. P., Burrus, C. A. and Buehler, E., Elec. Lett. 13 484 (1977).CrossRefGoogle Scholar
6. Pollack, M. A., Nahory, R. E., DeWinter, J. C. and Ballman, A. A., Appl. Phys. Lett. 33, 314 (1978).CrossRefGoogle Scholar
7. Seki, Y., Matsui, J. and Watanabe, H., J. Appl. Phys. 47, 3374 (1976).Google Scholar
8. Seki, Y., Watanabe, H. and Matsui, J., J. Appl. Phys. 49, 822 (1978).CrossRefGoogle Scholar
9. Chin, A. K., Temkin, H. and Roedel, R. J., Appl. Phys. Lett. 34, 476 (1979).CrossRefGoogle Scholar
10. Bonner, W. A., Mat. Res. Bull. 15, 63 (1980).Google Scholar
11. lizuka, T., J. Elect. Chem. Soc. 118, 1190 (1971).Google Scholar
12. Mullin, G. B., Royle, A., Straughan, B. W., Tufton, P. G. and Williams, E. W., J. Crystal Growth 13/14, 640 (1972).Google Scholar
13. Clarke, R. C., Robertson, D. S. and Vere, A. W., J. Mat. Science 8, 1349 (1973).CrossRefGoogle Scholar
14. Huber, A. and Linh, N. T., J. Crystal Growth 29, 80 (1975).CrossRefGoogle Scholar
15. Akita, K., Kusunaki, T., Komiya, S. and Kotani, T., J. Crystal Growth 46, 783 (1979).CrossRefGoogle Scholar
16. Mahajan, S. and Chin, A. K., to appear in J. Crystal Growth (1981).Google Scholar
17. Chin, A. K., Mahajan, S. and Ballman, A. A., Appl. Phys. Lett. 35, 784 (1979).Google Scholar
18. Mahajan, S., Bonner, W. A., Chin, A. K., Miller, D. C. and Temkin, H., unpublished work (1981).Google Scholar
19. Galavanov, V. V., Metreveli, S. G., Siukaev, N. V. and Starosel tseva, S. P. Sov. Phys. Semicond. 3, 94 (1969).Google Scholar
20. Kundukov, R. M., Metreveli, S. G. and Siukaev, N. V., Sov. Phys. Semicond. 1, 765 (1967).Google Scholar
21. Hooper, A. and Tuck, B., Solid State Electron. 19, 513 (1976).CrossRefGoogle Scholar
22. Tuck, B. and Hooper, A., J. Phys. D. 8, 1806 (1975).CrossRefGoogle Scholar
23. Chikawa, J., Proc. of the Conf. on Defects in Semiconductors, Boston (1980).Google Scholar
24. deKock, A. J. R., Stacy, W. T. and van de Wijgert, W. M. Appl. Phys. Lett. 34, 611 (1979).CrossRefGoogle Scholar
25. Wright, P. D., Chai, Y. C. and Antypas, G. A., IEEE Trans. Electr. Dev. ED–26, 1220 (1979).Google Scholar
26. Wright, P. D., Rezek, E. A., Ludoise, M. J. and Holonyak, N. Jr., IEEE J. Quantum Elect. QE–13, 637 (1977).CrossRefGoogle Scholar
27. Goodfellow, R. C., Carter, A. C., Griffith, I. and Bradley, R. R., IEEE Trans. Electr. Dev. ED–26, 1215 (1979).Google Scholar
28. Temkin, H., Keramidas, V. G. and Mahajan, S., to appear in J. Elect. Chem. Soc. (1981).Google Scholar
29. Farrow, R. F. C., J. Phys. D: Appl. Phys 7, 2436 (1974).Google Scholar
30. Johnston, W. D. Jr. and Miller, B. I., Appl. Phys. Lett. 23, 192 (1973).Google Scholar
31. Nash, F. R., Dixon, R. W., Barnes, P. A. and Schumaker, N. E., Appl. Phys. Lett. 27, 234 (1975).Google Scholar
32. Petroff, P. M., Johnston, W. D. Jr. and Hartman, R. L., Appl. Phys. Lett. 25, 226 (1974).Google Scholar
33. Johnston, W. D. Jr. Epps, G. Y., Nahory, R. E. and Pollack, M. A., Appl. Phys. Lett. 33, 992 (1978).Google Scholar
34. Mahajan, S., Johnston, W. D. Jr., Pollack, M. A. and Nahory, R. E., Appl. Phys. Lett. 34, 717 (1979).CrossRefGoogle Scholar
35. Winter, A. T., Mahajan, S. and Brasen, D., Phil. Mag. A. 37, 315 (1978).CrossRefGoogle Scholar
36. Brasen, D. and Thiel, F. A., Bell Laboratories, unpublished work (1977).Google Scholar
37. Lax, M., J. Appl. Phys. 48, 3919 (1977)Google Scholar
38. Lang, D. V. and Kimerling, L. C., Phys. Rev. Lett. 33, 489 (1974).Google Scholar
39. Bisaro, R., Merenda, P. and Pearsall, T. P., Appl. Phys. Lett. 34, 100 (1979).Google Scholar
40. Petroff, P. M. and Hartman, R. L., Appl. Phys. Lett. 23, 469 (1973).CrossRefGoogle Scholar
41. Hutchinson, P. W. and Dobson, P. S., Phil. Mag. 32, 745 (1975).Google Scholar
42. Bialas, D. and Hesse, J., J. Mat. Sci. 4, 779 (1969).CrossRefGoogle Scholar
43. Ravi, K. V., Met. Trans. 4, 681 (1973).Google Scholar
44. Kamejima, T., Ishida, K. and Matsui, J., Jap. J. Appl. Phys. 16, 233 (1977).Google Scholar