Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T21:14:46.763Z Has data issue: false hasContentIssue false

Interrelation between Light Emitting and Structural Properties of Si Nanoclusters Embedded in SiO2 and Al2O3 Hosts

Published online by Cambridge University Press:  19 November 2013

L. Khomenkova
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
O. Kolomys
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
V. Strelchuk
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
A. Kuchuk
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
V. Kladko
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
M. Baran
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
J. Jedrzejewski
Affiliation:
Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
I. Balberg
Affiliation:
Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
P. Marie
Affiliation:
CIMAP/ENSICAEN, 6 Blvd. Maréchal Juin, 14050 Caen cedex 4, France
F. Gourbilleau
Affiliation:
CIMAP/ENSICAEN, 6 Blvd. Maréchal Juin, 14050 Caen cedex 4, France
N. Korsunska
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, Kyiv 03028, Ukraine
Get access

Abstract

The present work deals with the comparative investigation of Si-ncs embedded in SiO2 and Al2O3 dielectrics grown by RF magnetron sputtering on fused quarts substrate. The effect of post-deposition processing on the evolution of microstructure of the films and their optic and luminescent properties was investigated. It was observed that photoluminescence (PL) spectra of Six(SiO2)1-x films showed one PL band, which peak position shifts from 860 nm to 700 nm when the x decreases from 0.7 to 0.3. It is due to exciton recombination in Si-ncs. For Six(Al2O3)1-x films, several PL bands peaked at about 570-600 nm and 700-750 nm and near-infrared tail or band peaked at about 800 nm were found. Two first PL bands were ascribed to different oxygen-deficient defects of oxide host, whereas near-infrared PL component is due to exciton recombination in Si-ncs. The comparison of both types of the samples showed that the main radiative recombination channel in Six(SiO2)1-x films is exciton recombination in Si-ncs, while in Six(Al2O3)1-x films the recombination via defects prevails due to higher amount of interface defects in the Six(Al2O3)1-x caused by stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
Lehman, V., Gosele, U., Appl. Phys. Lett. 58, 856 (1991).CrossRefGoogle Scholar
Chen, X. Y., Lu, Y. F., Tang, L. J., Wu, Y. H., Cho, B. J., Xu, X. J., Dong, J. R., Song, W. D., J. Appl. Phys. 97, 014913 (2005).CrossRefGoogle Scholar
Khomenkova, L., Korsunska, N., Yukhimchuk, V., Jumaev, B., Torchynska, T., Vivas Hernandez, A., Many, A., Goldstein, Y., Savir, E., Jedrzejewski, J., J. Lumin 102-103, 705 (2003).CrossRefGoogle Scholar
Baran, N., Bulakh, B., Venger, Ye., Korsunska, N., Khomenkova, L., Stara, T., Goldstein, Y., Savir, E., Jedrzejewski, J., Thin Solid Films 517, 5468 (2009).CrossRefGoogle Scholar
Qin, G. G., Liu, X. S., Ma, S.Y., Lin, J., Yao, G. Q., Lin, X.Y., Lin, K.X., Phys. Rev. B, 55, 12876 (1997).CrossRefGoogle Scholar
Khomenkova, L., Portier, X., Cardin, J., Gourbilleau, F., Nanotechnology 21, 285707 (2010).CrossRefGoogle Scholar
Steimle, R. F., Muralidhar, R., Rao, R., Sadd, M., Swift, C.T., Yater, J., Hradsky, B., Straub, S., Gasquet, H., Vishnubhotla, L., Prinz, E. J., Merchant, T., Acred, B., Chang, K., White, B. E. Jr., Microelectronics Realibility, 47, 585 (2007).CrossRefGoogle Scholar
Baron, T., Fernandes, A., Damlencourt, J.F., De Salvo, B., Martin, F., Mazen, F., Haukka, S., Appl. Phys. Lett. 82, 4151 (2003).Google Scholar
Mikhaylov, A. N., Belov, A. I., Kostyuk, A. B., Zhavoronkov, I. Yu., Korolev, D. S., Nezhdanov, A. V., Ershov, A. V., Guseinov, D. V., Gracheva, T. A., Malygin, N. D., Demidov, E. S., Tetelbaum, D. I.: Physics of the Solid State (St.Petersburg, Russia) 54, 368 (2012).CrossRefGoogle Scholar
Yerci, S., Serincan, U., Dogan, I., Tokay, S., Genisel, M., Aydinli, A., Turan, R., J. Appl. Phys., 100, 074301 (2006).CrossRefGoogle Scholar
Núñez-Sánchez, S., Serna, R., García López, J., Petford-Long, A. K., Tanase, M., Kabius, B., J. Appl. Phys. 105, 013118 (2009).CrossRefGoogle Scholar
Korsunska, N., Stara, T., Strelchuk, V., Kolomys, O., Kladko, V., Kuchuk, A., Romanyuk, B., Oberemok, O., Jedrzejewski, J., Marie, P., Khomenkova, L., Balberg, I., Nanoscale Research Letters, 8, 273 (2013).CrossRefGoogle Scholar
Korsunska, N., Stara, T., Strelchuk, V., Kolomys, O., Kladko, V., Kuchuk, A., Khomenkova, L., Jedrzejewski, J., Balberg, I., Physica E 51, 115 (2013).Google Scholar
Bi, L., Feng, J. Y., J. Lumin. 121, 95 (2006).CrossRefGoogle Scholar
Jones, B. J., Barklie, R. C., J. Phys. D.:Appl.Phys., 38, 1178 (2005).CrossRefGoogle Scholar
Yin, S., Xie, E., Zhang, C., Wang, Z., Zhou, L., Ma, I.Z., Yao, C.F., Zang, H., Liu, C.B., Sheng, Y.B., Gou, J., Nucl. Instrum. Meth. B 12-13, 2998 (2008).CrossRefGoogle Scholar
Song, Y., Zhang, C.H., Wang, Z.G., Sun, Y.M., Duan, J.L., Zhao, Z.M., Nucl. Instrum. Meth. B, 245, 210 (2006).CrossRefGoogle Scholar
Dogan, I., Yildiz, I., Turan, R., Physica E, 41, 976 (2009).CrossRefGoogle Scholar