Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:51:12.307Z Has data issue: false hasContentIssue false

Interralation Between Hume-Rothery Mechanism, Hybridization and Covalent Bonds in Aluminum- and Boron-based Icrosahedral Approximants and Quasicrystals

Published online by Cambridge University Press:  17 March 2011

Kaoru Kimura
Affiliation:
Department of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
Kazuhiro Kirihara
Affiliation:
Department of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
Masaaki Fujumori
Affiliation:
Department of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
Takahiro Nakayama
Affiliation:
Department of Advanced Materials Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
Masaki Takata
Affiliation:
Department of Applied Physics, Nagoya University, Furoh-cho, Senju-ku, Nagoya 464-0814, JAPAN
Makoto Sakata
Affiliation:
Department of Applied Physics, Nagoya University, Furoh-cho, Senju-ku, Nagoya 464-0814, JAPAN
Get access

Abstract

Metallic-covalent bonding conversion in icosahedral clusters of Al and B by small changes of the structure was demonstrated by molecular orbital calculations. According to the electron density distribution obtained using the maximum entropy method and the Rietveld method, the bonding conversion phenomenon occurs even in cluster solids such as some Al- and B-based icosahedral approximant phases (Al12Re, α-AlMnSi, α-rhombohedral boron). The multiple-shell atomic structure, the electrical and optical conductivity are compared for metal doped β-rhombohedral boron and AlLiCu or AlPdRe icosahedral quasicrystal. Photoemission and electron energy loss spectroscopy investigations for V doped β-rhombohedral have been discussed. Conclusions are the following two. It is difficult to distinguish a Hume-Rothery, i.e. structure-induced, pseudogap, and a covalent bonding, i.e. hybridization, pseudogap for materials with a highly symmetric Brillouin zone and a strong potential for valence electrons. Because hybridization is necessary not only for covalent bonds but also for metallic ones, it is better to use the covalent bonding pseudogap than the hybridization pseudogap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kimura, K. and Takeuchi, S.: Quasicrystals: The State of the Art (2nd edition), ed. Divincezo, D. P. and Steinhardt, P. J., (World Scientific, Singapore, 1999) pp.325.Google Scholar
2. Hafner, J. and Krajci, M.: Phys. Rev. B 57, 2849 (1998).Google Scholar
3. Kimura, K., Takeda, M., Fujimori, M., Tamura, R., Matsuda, H., Schmechel, R. and Werheit, H.: J. Solid State Chem., 133,302 (1997).Google Scholar
4. Fujimori, M. and Kimura, K.: J. Solid State Chem., 133, 310 (1997).Google Scholar
5. Murakami, H. and Kanayama, T.: Appl. Phys. Lett., 67, 2341 (1995).Google Scholar
6. Yamada, H., Iwakami, W., Takeuchi, T., Mizutani, U., Takata, M., Yamaguchi, S. and Matsuda, T.: Proc. 6th Inter. Conf. Quasicrystals, ed. by Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1998) pp.664.Google Scholar
7. Fujimori, M., Nakata, T., Nakayama, T., Nishibori, E., Kimura, K., Takata, M. and Sakata, M.: Phys. Rev. Lett., 82,4452 (1999).Google Scholar
8. Takata, M., Umeda, B., Nishibori, E., Sakata, M., Saito, Y., Ohno, M. and Shinohara, H.: Nature, 377, 46 (1995).Google Scholar
9. Sakata, M. and Sato, M.: Acta Cryst. A 46, 263 (1990).Google Scholar
10. Elser, V. and Henley, C. L., Phys. Rev. Lett. 55, 2883 (1985).Google Scholar
11. Henley, C. L. and Elser, V., Philos. Mag. B 53, L59 (1986).Google Scholar
12. Biggs, B. D., Pierce, F. S. and Poon, S. J., Europhys. Lett. 19, 415 (1992).Google Scholar
13. Quivy, A. et al., J. Phys.: Condens. Matter 8, 4223 (1996).Google Scholar
14. Tamura, R., Kirihara, K., Kimura, K. and Ino, H. in Proc. 5th Int. Conf. on Quasicrystals, ed. Janot, C. and Mosseri, R. (World Scientific, Singapore, 1995) pp.539.Google Scholar
15. Kirihara, K., Nakata, T., Takata, M., Kubota, Y., Nishibori, E., Kimura, K. and Sakata, M.: Mater. Sci. Eng. A 294–296, 492 (2000).Google Scholar
16. Kirihara, K., Nakata, T., Takata, M., Kubota, Y., Nishibori, E., Kimura, K. and Sakata, M.: Phys. Rev. Lett. 85, 3468 (2000).Google Scholar
17. Belin, E. et al., J. Phys.: Condens. Matter 4, 1057 (1992).Google Scholar
18. Takeuchi, T., Yamada, Y., Mizutani, U., Honda, Y., Edagawa, K., and Takeuchi, S.: Proc. 5th Inter. Conf. on Quasicrystals, ed. Janot, C. and Mosseri, R. (World Scientific, Singapore, 1995) pp. 534.Google Scholar
19. Gong, X. G. et al., Phys Rev. B 43, 14277 (1991).Google Scholar
20. Kimura, K. Matsuda, H., Fujimori, M. Terauchi, M., Tanaka, M., Kumigashira, H., Yokoya, N., and Takahashi, T..: Proc. 6th Inter. Conf. Quasicrystals, ed. Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1998) pp 595.Google Scholar