Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T12:39:54.808Z Has data issue: false hasContentIssue false

Internal Friction and Dynamic Modulus in High Temperature Ru-Nb Shape Memory Intermetallics

Published online by Cambridge University Press:  16 January 2013

Laura Dirand
Affiliation:
Dpt. Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Maria L. Nó
Affiliation:
Dpt. Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Karine Chastaing
Affiliation:
ONERA (DMMP), 29 avenue de la Division Leclerc, F-92322 Châtillon Cedex, France.
Anne Denquin
Affiliation:
ONERA (DMMP), 29 avenue de la Division Leclerc, F-92322 Châtillon Cedex, France.
Jose San Juan
Affiliation:
Dpt. Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Get access

Abstract

Nowadays, aeronautic and aerospace are the more demanding sectors for shape memory alloys (SMA) after the bio-medical one. In particular the interest has been recently focused on very high temperature SMA, which would be able of working as sensors and actuators in the hot areas of the engines and exaust devices.

In the present work we undertook a study of the Ru-Nb SMA Intermetallics, which undergo two succesive martensitic transformations around 1050 K and 1180 K respectively, depending on composition. This study has been focused on measurements of internal friction spectra and dynamic modulus variation up to 1700 K, which have been carried out in a sub-resonant torsion mechanical spectrometer.

The internal friction and dynamic modulus have been studied as a function of the heating-cooling rate and the frequency in order to compare experimental behaviour with theoretical models for martensitic transformations. In addition to the internal friction peaks linked to both martensitic transformations we have also observed a complex relaxation process around 950 K, which seems to be linked to the interaction of the martensite interfaces with structural defects. An analysis and discusion of the potential microscopic mechanisms are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shape Memory Materials, 1999, edited by Otsuka, K. and Wayman, C.M. (Cambridge University Press, Cambridge, 1998).Google Scholar
Shape Memory and Superelastic Alloys, 2011, edited by Yamauchi, K., Ohkata, I., Tsuchiya, K. and Miyazaki, S. (Woodhead Publishing, Cambridge, 2011).CrossRefGoogle Scholar
Ma, J., Karaman, I. and Noebe, R.D., Int. Mat. Rev. 55, 257 (2010).CrossRefGoogle Scholar
Biggs, T., Cortie, M.B., Witcomb, M.J. and Cornish, L.A., Metall. Mater. Trans. A 32, 1881 (2001).CrossRefGoogle Scholar
Yamabe-Mitarai, Y., Hara, T. and Hosoda, H., Mat. Sci. For. 426, 2267 (2003).Google Scholar
Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Mater. Trans. 47, 650 (2006).CrossRefGoogle Scholar
Yamabe-Mitarai, Y., Hara, T., Miura, S. and Hosoda, H., Intermetallics 18, 2275 (2010).CrossRefGoogle Scholar
Fonda, R.W., Jones, H.N. and Vandermeer, R.A., Scripta Mater. 39, 1031 (1998).CrossRefGoogle Scholar
Fonda, R.W. and Jones, H.N., Mat. Sci. Eng. A 273275, 275 (1999).CrossRefGoogle Scholar
Gao, X., Cai, W., Zheng, Y.F. and Zhao, L.C., Mat. Sci. Eng. A 438440, 862 (2006).CrossRefGoogle Scholar
Chastaing, K., Denquin, A., Portier, R. and Vermaut, P., Mat. Sci. Eng. A 481, 702 (2008).CrossRefGoogle Scholar
Manzoni, A., Chastaing, K., Denquin, A., Vermaut, P. and Portier, R., ESOMAT-2009, 05021 (2009).Google Scholar
Manzoni, A., Chastaing, K., Denquin, A., Vermaut, P., Humbeeck, J. Van and Portier, R., Scripta Mater 64, 1071 (2011).CrossRefGoogle Scholar
Fonda, R.W. and Vandermeer, R.A., Phil. Mag. A 76, 119 (1997).CrossRefGoogle Scholar
He, Z., Zhon, J. and Furuya, Y., Mat. Sci. Eng. A 348, 36 (2003).CrossRefGoogle Scholar
He, Z., Wang, F. and Zhon, J., J. Mater. Sci. Technol. 22, 634 (2006).Google Scholar
Chen, B.H. and Franzen, H.F., J. Less Common Metals 253, 13 (1989).10.1016/0022-5088(89)90133-1CrossRefGoogle Scholar
Shapiro, S.M., Xu, G., Gu, G., Gardner, J. and Fonda, R.W., Phys. Rev. B 73, 214114 (2006).CrossRefGoogle Scholar
Chastaing, K., PhD These, Université Pierre et Marie Curie, Paris (2007).Google Scholar
Perez-Saez, R.B., Recarte, V., , M.L. and San Juan, J., Phys. Rev. B 57, 5684 (1998).CrossRefGoogle Scholar
Juan, J. San and Perez-Saez, R.B., Mat. Sci. For. 366368, 416 (2001).Google Scholar
Simas, P., Juan, J. San, Schaller, R. and , M.L., Key Eng. Mater. 423, 89 (2010).CrossRefGoogle Scholar
Dirand, L., , M.L., Chastaing, K., Denquin, A. and Juan, J. San, Appl. Phys. Lett. 101, 161909 (2012).CrossRefGoogle Scholar
Gremaud, G., Bidaux, J.E. and Benoit, W., Helv. Phys. Acta 60, 947 (1987).Google Scholar
Dirand, L., , M.L., Chastaing, K., Denquin, A. and Juan, J. San, to be published.Google Scholar