Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:03:53.569Z Has data issue: false hasContentIssue false

Intermediate Range Order in Silicate Melts and Glasses: Computer Simulation Studies

Published online by Cambridge University Press:  11 February 2011

Jürgen Horbach
Affiliation:
Institut für Physik, Johannes Gutenberg–Universität, Staudinger Weg 7, D-55099 Mainz, Germany
Anke Winkler
Affiliation:
Institut für Physik, Johannes Gutenberg–Universität, Staudinger Weg 7, D-55099 Mainz, Germany
Walter Kob
Affiliation:
Laboratoire des Verres, Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France
Kurt Binder
Affiliation:
Institut für Physik, Johannes Gutenberg–Universität, Staudinger Weg 7, D-55099 Mainz, Germany
Get access

Abstract

We present the results of large scale computer simulations to discuss the structural and dynamic properties of silicate melts with the compositions (Na2O)(2·SiO2), (Na2O)(20·SiO2) and (Al2O3)(2·SiO2). We show that these systems exhibit additional intermediate range order as compared to silica (SiO2) where the characteristic intermediate length scales stem from the tetrahedral network structure. Furthermore we show that the sodium dynamics in the sodium silicate systems exhibits a very peculiar feature: the long–time decay of the incoherent intermediate scattering function can be described by a Kohlrausch law with a constant exponent β for q > qth whereby qth is smaller than the location of the main peak in the static structure factor for the Na–Na correlations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Soules, T. F., J. Chem. Phys. 71, 4570 (1979);Google Scholar
Soules, T. F. and Busbey, R. F., J. Chem. Phys. 75, 969 (1980);Google Scholar
Soules, T. F. and Busbey, R. F., J. Chem. Phys. 78, 6307 (1983).Google Scholar
[2] Angell, C. A., Clarke, J. H. R., and Woodcock, L. V., Adv. Chem. Phys. 48, 397 (1981).Google Scholar
[3] Ngai, K. L., Proc. 4th Int. Discussion Meeting on Relaxations in Complex Systems, J. Non-Cryst. Solids 307310 (2003).Google Scholar
[4] Kramer, G. J., de Man, A. J. M., and van Santen, R. A., J. Am. Chem. Soc. 64, 6435 (1991).Google Scholar
[5] Horbach, J. and Kob, W., Phil. Mag. B 79, 1981 (1999);Google Scholar
Horbach, J., Kob, W., and Binder, K., Chem. Geol. 174, 87 (2001).Google Scholar
[6] Horbach, J. and Kob, W., J. Phys.: Condens. Matter 14, 9237 (2003).Google Scholar
[7] Winkler, A., Ph. D. Thesis (Mainz University, 2003).Google Scholar
[8] Ispas, S., Benoit, M., Jund, P., and Jullien, R., Phys. Rev. B 64, 214206 (2001).Google Scholar
[9] Mazurin, O. V., Streltsina, M. V., and Shvaiko–Shvaikowskaya, T. P., Handbook of Glass Data, Part A: Silica Glass and Binary Silicate Glasses (Elsevier, Amsterdam, 1983).Google Scholar
[10] Hansen, J.–P. and McDonald, I. R., Theory of Simple Liquids (Academic Press, London, 1986).Google Scholar
[11] Meyer, A., Schober, H., and Dingwell, D. B., Europhys. Lett. 59, 708 (2003).Google Scholar
[12] Horbach, J., Kob, W., and Binder, K., Phys. Rev. Lett. 88, 125502 (2003).Google Scholar
[13] Greaves, G. N., J. Non–Cryst. Solids 71, 203 (1985);Google Scholar
Ingram, M. D., Philos. Mag. B 60, 729 (1989).Google Scholar
[14] Jund, P., Kob, W., and Jullien, R., Phys. Rev. B 64, 134303 (2001).Google Scholar
[15] Fuchs, M., J. Non–Cryst. Solids 172–174, 241 (1994).Google Scholar