Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:00:24.206Z Has data issue: false hasContentIssue false

Interfacial Superstructures Studied by Grazing Incidence X-Ray Diffraction

Published online by Cambridge University Press:  25 February 2011

Koichi Akimoto
Affiliation:
Fundamental Research Laboratories, NEC Corporation 34, Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Jun'Ichiro Mizuki
Affiliation:
Fundamental Research Laboratories, NEC Corporation 34, Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Ichiro Hirosawa
Affiliation:
Fundamental Research Laboratories, NEC Corporation 34, Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Junji Matsui
Affiliation:
Fundamental Research Laboratories, NEC Corporation 34, Miyukigaoka, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Surface superstructures (reconstructed structures) have been observed by many authors. However, it is not easy to confirm that a superstructure does exist at an interface between two solid layers. The present paper reports a direct observation, by a grazing incidence x-ray diffraction technique with use of synchrotron radiation, of superstructures at the interface. Firstly, the boron-induced R30° reconstruction at the Si interface has been investigated. At the a Si/Si(111) interface, boron atoms at 1/3 ML are substituted for silicon atoms, thus forming a R30° lattice. Even at the interface between a solid phase epitaxial Si(111) layer and a Si(111) substrate, the boron-induced R30° reconstruction has been also observed. Secondly, SiO2/Si(100)-2×l interfacial superstructures have been investigated. Interfacial superstructures have been only observed in the samples of which SiO2 layers have been deposited with a molecular beam deposition method. Finally, the interfaces of MOCVD-grown AIN/GaAs(100) have been shown to have 1×4 and 1×6 superstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gibson, J.M., Gossmann, H.-J., Bean, J.C., Tung, R.T. and Feldman, L.C., Phys. Rev. Lett. 56, 355 (1986).Google Scholar
2. Robinson, I.K., Waskiewicz, W.K. and Tung, R.T., Phys. Rev. Lett. 57, 2714 (1986).Google Scholar
3. Akimoto, K., Mizuki, J., Tatsumi, T., Aizaki, N. and Matsui, J., Surf. Sci. 183, L297 (1987).Google Scholar
4. Akimoto, K., Mizuki, J., Hirosawa, I., Tatsumi, T., Hirayama, H., Aizaki, N. and Matsui, J., Extended Abstracts 19th Conf. on Solid State Devices and Materials (Business Center for Academic Societies Japan, Tokyo, 1987) p. 463466.Google Scholar
5. Mizuki, J., Akimoto, K., Hirosawa, I., Mizutani, T., and Matsui, J., J. Vac. Soc. & Technol. B6, 31 (1988).Google Scholar
6. Akimoto, K., Hirosawa, I., Mizuki, J., Fujieda, S., Matsumoto, Y. and Matsui, J., Jpan, J. Appl. Phys. 27, L1401 (1988).Google Scholar
7. Fujieda, S., Akimoto, K., Hiroswa, I., Mizuki, J., Matsumoto, Y. and Matsui, J., Japan, J. Appl. Phys. 28, L16 (1989).Google Scholar
8. Akimoto, K., Hirosawa, I., Mizuki, J. and Matsui, J., Proc. 2nd Int. Conf. on Formation of Semiconductor Interfaces, 1988, Takarazuka, Japan, to be published in Appl. Surf. Sci.Google Scholar
9. Hirose, K., Akimoto, K., Hirosawa, I., Mizuki, J., Mizutani, T. and Matsui, J., Phys. Rev. B39, 8037 (1989).Google Scholar
10. Lorreto, D., Gibson, J.M. and Yalisove, S.M., Phys. Rev. Lett. 63, 298 (1989).Google Scholar
11. Marra, W.C., Eisenberger, P. and Cho, A.Y., J. Appl. Phys. 50, 6927 (1979).Google Scholar
12. Hirayama, H., Tatsumi, T. and Aizaki, N., Surf. Sci. 193, L47 (1988).Google Scholar
13. Korobtsov, V.V., Lifshits, V.G. and Zotov, A.V., Surf. Sci. 195, 466 (1988).Google Scholar
14. Thibaudau, F., Dumas, Ph., Mathiez, Ph., Humbert, A., Satti, D. and Salvan, F., Surf. Sci. 211/212, 148 (1989).Google Scholar
15. Headrick, R.L., Feldman, L.C. and Robinson, I.K., Appl. Phys. Lett. 55, 442 (1989).Google Scholar
16. Headrick, R.L., Robinson, I.K., Vlieg, E. and Feldman, L.C., Phys. Rev. Lett. 63, 1253 (1989).Google Scholar
17. Gorkum, A.A. van, Nakagawa, K. and Shiraki, Y., Japan, J. Appl. Phys. 26, L1933 (1987).Google Scholar
18. Levi, A.F., McCall, S.L. and Platzman, P.M., Appl. Phys. Lett. 54, 940 (1989).Google Scholar
19. Ourmazd, A., Taylor, D. W., Rentschler, J.A. arnd Benk, J., Phys. Rev. Lett. 59, 213 (1987).Google Scholar
20. Fuoss, P.H., Norton, L.J., Brennan, S. and Colbrie, A. Fisher, Phys. Rev. Lett. 60, 600 (1988).Google Scholar
21. Himpsel, F.J., McFeely, F.R., Taleb-lbrahimi, A., Yarmoff, J.A. and Hollinger, G., Phys. Rev. B38, 6084 (1988).Google Scholar
22. Yang, W.S., Jona, F. and Marcus, P.M., Solid State Commun. 43, 847 (1982).Google Scholar
23. Appelhaum, J.A. and Hamann, D.R., Surf. Sci. 74, 21 (1978).Google Scholar
24. Chadi, D.J., Phys. Rev. Lett. 43, 43 (1979).Google Scholar
25. Hirosawa, I., Akimoto, K., Tatsumi, T., Mizuki, J. and Matsui, J., Proc. of the Conf. on defect recognition and image processing for research and development of semiconductors, 1989, Tokyo, to be published in J. Cryst. Growth.Google Scholar
26. Pashley, M.D., Haberern, K.W., Friday, W., Woodall, J.M. and Kirchner, P.D., Phys. Rev. Lett. 60, 2176 (1988).Google Scholar