Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:50:00.646Z Has data issue: false hasContentIssue false

Interfacial Strain Reliefs in Epitaxial YBa2Cu3O7–δ Thin Films Grown on SrTiO3 Buffered MGO Substrates

Published online by Cambridge University Press:  10 February 2011

Xingtian Cui
Affiliation:
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204 Metals & Ceramics Div., ORNL, MS6116, Oak Ridge, TN37831
Q. Y Chen
Affiliation:
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204
Yongxiang Guo
Affiliation:
Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, NM 87131
W. K. Chu
Affiliation:
Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, TX 77204
Get access

Abstract

High quality YBa2Cu3O7–δ, (YBCO) epitaxial thin films grown on MgO substrate with a strainrelieved SrTiO3 (STO) buffer layer have been investigated by Rutherford backscattering spectrometry (RBS), ion channeling and high resolution cross sectional transmission electron microscopy (XTEM). The in-situ growth of STO buffer layer along with the YBCO films was carried out by pulsed laser ablation. In this work, minimum yield of channeling measurements have shown that a very thin STO buffer layer is sufficient to grow highly crystalline YBCO thin films on MgO substrates. TEM studies showed that the STO layers were strain-relieved by an array of periodic edge dislocations. The YBCO films on STO buffer, as in those grown directly on an STO substrate, evolved from a strained layer to a largely dislocation free area.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cheung, Jeffrey T., Gergis, I., James, M. and DeWames, R. E., Appl. Phys. Lett. 60(25),3180 (1992).Google Scholar
2.Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K, Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C. and List, F. A., Science 274, 755 (1996).Google Scholar
3.Wu, J. Z., Hsieh, P. Y., McGuier, A. V., Schmidt, D. L., Wood, L. T., Shen, Y., and Chu, W. K., Phys. Rev. B 44, 12643 (1991).Google Scholar
4.Qu, J. Z., Liu, J. R., Chen, Q. Y., Cui, X. T. and Chu, W. K., Nuclear Instruments & Methods in Physics Research B118, 684 (1996).Google Scholar
5.Olsson, Eva and Shinde, Subhash L., Interfaces in High-Tc Superconducting Systems, Edited by Shinde, Subhash L. and Rudman, David A. (Springer-Verlag New York, 1994), Chapter 4.Google Scholar
6.Narumi, E.. Song, L. W., Yang, F., Patel, S., Kao, Y. H., and Shaw, D. T., Appl. Phys. Lett. 56, 2684 (1990).Google Scholar
7.Xingtian, Cui, Liu, J. R., Zhang, Z., Chen, Q. Y., Sharma, R. P., Chu, W. K., to be published, (1997).Google Scholar
8.Perry, S. S., Kim, H. I. and Merill, P. B., private communication, (1997).Google Scholar
9.Moeckly, B. H., Russek, S. E., Lathrop, D. K., Buhrma, R. A.,, Li, J. and Mayer, J. W., Appl. Phys. Lett. 57,1687(1990).Google Scholar
10.Chu, W. K., Mayer, J. W. and Nicolet, M. A., Backscattering Spectrometry (Academic, New York,1978).Google Scholar
11.Blanchin, M. G., Teodorescu, V. S., Garcia-Lopez, J., Siejka, J., Bisaro, R. and Mercandalli, L. M., Philosophical Magazine A, 74(1), 151 (1996).Google Scholar
12.Weertman, J., and Weertman, J. R., Elementary Dislocation Theory, (The Macmillan Company, New York, 1965).Google Scholar
13.Thermophical Properties of Matter, edited by Touloukian, Y S. and Ho, C. Y, The TRCP Data Series(IFI/Plenum, New York, 1975), Vol.13.Google Scholar
14.Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O. B., Kroeger, D. M., and Oye, H. A., Phys. Rev. B 37, 7426 (1988).Google Scholar