Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:26:24.207Z Has data issue: false hasContentIssue false

Interfacial Stability and Misfit Dislocation Formation in InAs/Gaas(110) Heteroepitaxy

Published online by Cambridge University Press:  10 February 2011

Luis A. Zepeda-Ruiz
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
Dimitrios Maroudas*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
W. Henry Weinberg
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
Get access

Abstract

A comprehensive atomic-scale study is presented of the mechanical behavior of the InAs epitaxial film, the interfacial stability with respect to misfit dislocation formation, and the film surface morphology in InAs/GaAs(110) heteroepitaxy. If a GaAs buffer layer of ten-monolayer thickness is used in the epitaxial growth, a transition is predicted from a coherent to a semi- coherent interface consisting of a regular array of edge interfacial misfit dislocations at a critical film thickness of six monolayers. A second transition to a semicoherent interface consisting of a completely developed network of perpendicularly intersecting misfit dislocations is predicted at thicknesses greater than 150 monolayers. Our simulation results are in excellent agreement with recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bressler-Hill, V., Lorke, A., Varma, S., Petroff, P. M., Pond, K., and Weinberg, W. H., Phys. Rev. B. 50, 8479 (1994); V.Bressler-Hill, S.Varma, A.Lorke, B. Z.Nosho, and W. H.Weinberg, Phys. Rev. Lett., 74, 3209 (1995).Google Scholar
2.Zhang, X., Pashley, D. W., Hart, L., Neave, J. H., Fawcett, P. N., and Joyce, B. A., J. Crystal Growth 131, 300 (1993).Google Scholar
3.Belk, J. G., Sudijono, J. L., Zhang, X. M., Neave, J. H., Jones, T. S., and Joyce, B. A., Phys. Rev. Lett. 78, 475 (1997).Google Scholar
4.Keating, P. N., Phys. Rev. 145, 637 (1966); R. M.Martin, Phys. Rev. B 1, 4005 (1970); J. L.Martins and A.Zunger, Phys. Rev. B 30, 6217 (1984).Google Scholar
5.Priester, C. and Lannoo, M., Phys. Rev. Lett. 75, 93 (1995).Google Scholar
6.Ichimura, M., Phys. Stat. Sol. A 153, 431 (1996).Google Scholar
7.Freund, L. B. and Nix, W. D., Appl. Phys. Lett. 69, 173 (1996).Google Scholar
8.Maroudas, D., Zepeda-Ruiz, L. A., and Weinberg, W. H., submitted for publication (1997).Google Scholar
9.Lutsko, J. F., J. Appl. Phys. 64, 1152 (1988); ibid. 65, 2991 (1989).Google Scholar
10.Bonnet, R., Philos. Mag. A 73, 1193 (1996).Google Scholar