Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:55:26.501Z Has data issue: false hasContentIssue false

Interfacial Segregation in Ionic Conductors: Ceria

Published online by Cambridge University Press:  10 February 2011

D. A. Blom
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Y.-M. Chiang
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Grain boundary segregation in cerium dioxide doped with varying amounts of gadolinium oxide and tantalum oxide has been measured with x-ray energy dispersive spectroscopy using a Vacuum Generators HB603 Scanning Transmission Electron Microscope (STEM). The data has been analyzed in the framework of both elastic relaxation and space charge segregation forces with a limited number of surface sites. Results show that multiple driving forces must be taken into account to explain aliovalent solute segregation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuller, H. L. and Nowick, A. S., J. Electrochem. Soc. 122 (2), 255 (1975).Google Scholar
2. Steele, B. C. H., Chem. and Ind. 19, 651 (1986).Google Scholar
3. Tschöpe, A., Ying, J. Y., Amonlirdviman, K., and Trudeau, M. L. in Molecularlv Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K. E., Chow, G.-M., Xiao, T. D., and Cammarata, R. C. (Mater. Res. Soc. Proc. 351, Pittsburgh, PA, 1994) pp. 251256.Google Scholar
4. Gerhardt, R. and Nowick, A. S., J. Am. Ceram. Soc. 69 (9), 641 (1986);. 69 (9), 647 (1986).Google Scholar
5. Hwang, S.-H. and Chen, I.-W., J. Am. Ceram. Soc. 73 (11), 3269 (1990).Google Scholar
6. Winnubst, A. J. A., Kroot, P. J. M. and Burggraaf, A. J., J. Phys. Chem Solids 44 (10), 955 (1983).Google Scholar
7. Boutz, M. M. R., Winnubst, A. J. A. and Burggraaf, A. J., J. of the Europ. Ceram. Soc. 13, 89 (1994).Google Scholar
8. Theunissen, G. S. A. M., Winnubst, A. J. A. and Burggraaf, A. J., J. Mater. Sci. 27, 5057 (1992).Google Scholar
9. Hughes, A. E., J. Am. Ceram. Soc. 78 (2), 369 (1995).Google Scholar
10. Yan, M. F., Cannon, R. M. and Bowen, H. K., J. Appl. Phys. 54 (2), 764 (1983).Google Scholar
11. Frenkel, J., Kinetic Theory of Liquids, (Oxford University Press, New York, 1946).Google Scholar
12. Kliewer, K. L. and Kohler, J. S., Phys. Rev. 140 (4A), A1226 (1965).Google Scholar
13. Kliewer, K. L., Phys. Rev. 140 (4A), A1241 (1965); J. Phys. Chem. Solids 27 705 (1966); J. Phys. Chem. Solids 27 719 (1966).Google Scholar
14. Poeppel, R. B. and Blakely, J. M., Surf. Sci. 15, 507 (1969)Google Scholar
15. Blakely, J. M. and Danyluk, S., Surf. Sci. 40, 37 (1973).Google Scholar
16. Danyluk, S. and Blakely, J. M., Surf. Sci. 41, 359 (1974).Google Scholar
17. Ikeda, J. A. S., Chiang, Y.-M. and Garratt-Reed, A. J., Proc. XIII International Congress on X-ray Optics and Microanalvsis. IOP Publications, 1992.Google Scholar
18. Dceda, J. A. S., Chiang, Y.-M., Garratt-Reed, A. J. and Vander Sande, J. B., J. Am. Ceram. Soc, 76(10), 2447 (1993).Google Scholar
19. McLean, D., Grain Boundaries in Metals, (Clarendon Press, Oxford, 1957).Google Scholar