Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T16:57:02.991Z Has data issue: false hasContentIssue false

Interfacial Microstructure and Carrier Conduction Process in Pt/Ti Ohmic Contact to P-In0.53Ga0.47As Formed by Rapid Thermal Processing

Published online by Cambridge University Press:  25 February 2011

S.N.G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T. Boone
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
P.M. Thomas
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
V.G. Riggs
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W.C. Dautremont-Smith
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W.D. Johnson Jr.
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The strong dependence of electrical properties of Pt/Ti ohmic contact to p–In0.53Ga0.47 As (Zn: 5 × 1018 cm−3) on the interfacial microstructure formed by rapid thermal processing (RTP) were intensively studied by transmission electron microscopy, Auger Spectroscopy, and transmission line model (TLM) measurements. The rapid decrease of the specific contact resistance with an increase in RTP temperature was correlated with the development of an interfacial reaction zone. Significant interdiffusion of Ti, In and As across the interface occurred at temperature above, 350°C for a 30 second of RTP. A minimum specific contact resistance (3.4 × 10−6 Ω-cm2) was achieved at RTP temperature of 450°C. The corresponding interfacial microstructure revealed a complicated solid state reaction zone with InAs as one of the major interfacial compounds. The low contact resistance is attributed to the carrier conduction through the InAs regions. This is also consistent with the results of Pt/Ti contact experiments to p-type InAs, InP and GaAs binary surfaces, where the lowest contact resistance was achieved on InAs (3.0 × 10−7 Ω-cm2at Zn: 5 × 1018 cm−3). The temperature dependence of specific contact resistance of as-deposited Pt/Ti contact to InGaAs agrees very well with the thermionic emission dominated carrier transport mechanism with an effective barrier height, φb, of 0.13V. The rapid decrease in the contact resistance as well as its reduced temperature dependence after RTP treatment at elevated temperatures suggesting a partial conversion of thermionic emission dominated contact area to field emission dominated regions. A phenomenological theory of multiple parrallel carrier conduction processes was proposed to analyse the temperature dependence of specific contact resistance for contacts with complicated interfacial microstructure. It was found that, for low resistance contacts, majority of the carriers conducted through only a fraction of the contact area via a tunneling mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Katz, A., Dautremont-Smith, W.C., Thomas, P.M., Koszi, L.A., Lee, J.W., Riggs, V.G., Brown, R.L., Zilko, J.L. and Lahav, A., J. Appl. Phys., 65, 4319 (1989).CrossRefGoogle Scholar
[2] Katz, A., Dautremont-Smith, W.C., Chu, S.N.G., Thomas, P.M., Koszi, L.A., Lee, J.W., Riggs, V.G., Brown, R.L., Napholtz, S.G., Zilko, J.L. and Lahav, A., Appl. Phys. Lett., 54, 2306 (1989).CrossRefGoogle Scholar
[3] Katz, A., Thomas, P.M., Chu, S.N.G., Dautremont-Smith, W.C., Sobers, R.G., and Napholtz, S.G., J. Appl. Phys., 66, 2056 (1989).CrossRefGoogle Scholar
[4] Kaumanns, R., Grote, N., Bach, H-G., Fidorra, F., Inst. Phys. Conf.. Ser No. 91, 501 (1987).Google Scholar
[5] Fukuda, M., Fujita, O., and Uehara, S., J. Lightwave Technol. 6, 1808 (1988).CrossRefGoogle Scholar
[6] Dautremont-Smith, W.C., Barnes, P.A., and Stayt, J.W. Jr., J. Vac. Sci. Technol. B2, 620, (1984).CrossRefGoogle Scholar
[7] Chin, A.K., Zipfel, C.L., Geva, M., Camlibcl, I., Skeath, P., and Chin, B.H., Appl. Phys. Lett., 45,37 (1984).CrossRefGoogle Scholar
[8] Robinson, G. Y., “Physics and Chemistry of III-V Compound Semiconductor Interfaces”, Edited by Wilmsen, Carl W., p. 73, Plenum Press, New York (1985).CrossRefGoogle Scholar
[9] Sands, T., Keramidas, V. G., Yu, A. J., Yu, K-M, Gronsky, R., and Washburn, J., J. Mater. Res. 2, 262 (1987).CrossRefGoogle Scholar
[10] Kuan, T. S., Freeouf, J. L., Batson, P. E., and Wilkie, E. L., J. Appl. Phys. 58, 1519 (1985).CrossRefGoogle Scholar
[11] Sand, T., Keramidas, V. G., Gronsky, R. and Washburn, J., Thin Solid Films, 136, 105 (1986).CrossRefGoogle Scholar
[12] Sand, T., Marshall, E. D., and Wang, L. C., J. Mater. Res. 3, 914 (1988).CrossRefGoogle Scholar
[13] Allen, L. H., Hung, L. S., Kavanagh, K. L., Phillips, J. R., Yu, A. J., and Mayer, J. W., Appl. Phys. Lett. 51, 326 (1987).CrossRefGoogle Scholar
[14] Murakami, M., Shih, Y-C., Price, W. H., Wilkie, E. L., Childs, K. D. and Parks, C. C., J. Appl. Phys. 64, 1984 (1988).Google Scholar
[15] Murakami, M., Price, W. H., Shih, Y-C., Braslau, N., Childs, K. D. and Parks, C. C., J. Appl. Phys. 62, 3295 (1987).CrossRefGoogle Scholar
[16] Murakami, M., Price, W. H., Shih, Y-C., Childs, K. D., Furman, B. K., and Tiwari, S., J. Appl. Phys. 62, 3288 (1987).CrossRefGoogle Scholar
[17] Murakami, M., Shih, Y-C., Price, W. H., Braslau, N., Childs, K. D., and Parks, C. C., Inst. Phys. Conf. Ser. No. 91,55(1988).Google Scholar
[18] Murakami, M., Shih, Y. C., Kim, H. J., and Price, W. H., Proc. of the 20th Int. Conf. Sol. Stat. Dev. Mat., D–2–3,283, Jap. Soc. of Appl Phys. (1988).Google Scholar
[19] Vandenberg, J. M., Temkin, H., Hamm, R. A., and DiGiuseppe, M. A., J. Appl. Phys. 53, 7385 (1982).CrossRefGoogle Scholar
[20] Vandenberg, J. M., and Temkin, H., J. Appl. Phys. 55, 3676 (1984).CrossRefGoogle Scholar
[21] Keramidas, V. G., Temkin, H., and Mahajan, S., Inst. Phys. Conf. Ser. No. 56, 293 (1981).Google Scholar
[22] Power Diffraction File, Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Swarthmore, PA, 1980.Google Scholar
[23] Katz, A., Chu, S.N.G., Weir, B.E., Dautremont-Smith, W.C., Logan, R.A., Tanbun-Ek, T., Savin, W., and Harris, D.W., to be published.Google Scholar
[24] Sze, S. M., Semiconductor Devices: Physics and Technology, John Wiley and Sons, New York (1985).Google Scholar
[25] Nittono, T., Ito, H., Nakajima, O., and Ishibashi, T., Jap. J. Appl. Phys., 26,10, L865 (1986).Google Scholar
[26] Kajiyama, K., Mizushima, Y., and Sakata, S., Appl. Phys. Lett., 23 458 (1973).CrossRefGoogle Scholar
[27] Li, J. C. M., Rate Processes in Plastic Deformation of Materials, Edited by Li, J. C. M. and Mukherjee, A. K., pp. 479, ASM Materials/Metalworking Technol. Series #4, ASM, Cleveland, Ohio (1975).Google Scholar
[28] Murakami, M., Hallali, P.-E., Price, W.H., Norcott, M.. Lustig, N., Kim, H.-J.. Wright, S.L., and LaTulipe, D., Mat. Res. Soc. Symp. Proc. this volume, (1990).Google Scholar