Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:37:41.433Z Has data issue: false hasContentIssue false

Interfacial Arsenic from Wet Oxidation of AlxGa1-xAs/GaAs: Its Effects on Electronic Properties and New Approaches to Mis Device Fabrication

Published online by Cambridge University Press:  03 September 2012

Carol I.H. Ashby
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
John P. Sullivan
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
Nancy A. Missert
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
Paula P. Newcomer
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
Hong Q. Hou
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
B.E. Hammons
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
Michael J. Hafich
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
Albert G. Baca
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0603.
Get access

Abstract

Three important oxidation regimes have been identified in the temporal evolution of the wet thermal oxidation of AlxGa1-xAs (1 ≥ x ≥ 0.90) on GaAs: 1) oxidation of Al and Ga in the AlxGa1-xAs alloy to form an amorphous oxide layer, 2) oxidative formation and elimination of elemental As (both crystalline and amorphous) and of amorphous As2O3, and 3) crystallization of the oxide film. Residual As can result in up to a 100-fold increase in leakage current and a 30% increase in the dielectric constant and produce strong Fermi-level pinning and high leakage currents at the oxidized AlxGa1-xAs/GaAs interface. The presence of thermodynamically-favored interfacial As may impose a fundamental limitation on the application of AlGaAs wet oxidation for achieving MIS devices in the GaAs material system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dallesasse, J.M., Holonyak, N. Jr., Sugg, A.R., Richard, T.A., and El-Zein, N., Appl. Phys. Lett, 57, 22844 (1990).Google Scholar
2 Chen, E.I., Holonyak, N. Jr., and Maranowski, S.A., Appl. Phys. Lett., 66, 2688 (1995).Google Scholar
3 Richter, H., Wang, Z.P., Ley, L., Solid State Comm. 39, 625 (1981).Google Scholar
4 Schwartz, G.P., Eschwartz, B., DiStefano, D., Gualtieri, G.J., and Griffiths, J.E., Appl. Phys. Lett. 34, 205 (1979).Google Scholar
5 Schwartz, G.P., Gualtieri, G.J., Griffiths, J.E., Thurmond, C.D., Schwartz, B., Electrochem, J., Soc. 127, 2488 (1980).Google Scholar
6 Twesten, R.D., Follstaedt, D.M., Choquette, K.D., and Schneider, R.P. ,Jr. Appl. Phys. Lett. 69, 19 (1996).Google Scholar
7 Scaife, B. K. P., Principles of Dielectrics (Clarendon Press, Oxford, 1989).Google Scholar
8 Passlack, M., Hong, M., Mannaerts, J. P., Appl. Phys. Lett. 68, 1099 (1996).Google Scholar
9 Woodall, J.M., Kirchner, P.D., Freeouf, J.F., Mclnturff, D.T., Melloch, M.R., Pollak, F.H., Phil. Trans. Roy. Soc. Lond. A 344, 521 (1993).Google Scholar
10 Thurmond, C.D., Schwartz, G.P., Kammlott, G.W., and Schwartz, B., J. Electrochem Soc. 127, 1366 (1980).Google Scholar