Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:05:58.019Z Has data issue: false hasContentIssue false

Interface-Stabilized Nanoscale Quasi-Liquid Films and Interfacial Prewetting and Premelting Transitions

Published online by Cambridge University Press:  26 February 2011

Jian Luo
Affiliation:
[email protected], Clemson University, School of Materials Science and Engineering, 201 Olin Hall, Clemson, SC, 29634, United States, 864-656-5961, 864-656-1453
Vivek K Gupta
Affiliation:
[email protected], Clemson University, School of Materials Science and Engineering, 201 Olin Hall, Clemson, SC, 29634, United States
Haijun Qian
Affiliation:
[email protected], Clemson University, School of Materials Science and Engineering, 201 Olin Hall, Clemson, SC, 29634, United States
Get access

Abstract

Equilibrium-thickness, intergranular films (IGFs) have been observed in various ceramic materials. Recently, surficial amorphous films (SAFs) of similar character have also been found. Furthermore, a series of studies revealed the stabilization of disordered (quasi-liquid) IGFs and SAFs well below the bulk solidus or eutectic temperatures, wherein analogies to the phenomena of premelting and prewetting can be made. Accordingly, combined interfacial premelting and prewetting models have been developed using a diffuse-interface theory. This paper outlines the key results of two model experiments in support of the above theory: namely observation of quasi-liquid grain boundary films (metallic IGFs) in W-Ni and searching of a complete wetting transition for Bi2O3 on ZnO where SAFs become macroscopically thick. We propose that simple combined interfacial premelting and prewetting models apply to metallic IGFs, but only serve as a basis to understand IGFs and SAFs in ceramics where additional interactions, e.g. dispersion forces and space-charges, should be added separately and may result in more complex behaviors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Clarke, D. R., J. Am. Ceram. Soc. 70, 15 (1987).Google Scholar
2. Subramaniam, A. et al. , Mater. Sci. Eng., A 422, 3 (2006).Google Scholar
3. Cannon, R. M., and Esposito, L., Z. Metallkd. 90, 1002 (1999).Google Scholar
4. Luo, J., and Chiang, Y.-M., J. Eur. Ceram. Soc. 19, 697 (1999).Google Scholar
5. Luo, J., and Chiang, Y.-M., Acta Mater. 48, 4501 (2000).Google Scholar
6. Luo, J. et al. , Mater. Sci. Eng. A 422, 19 (2006).Google Scholar
7. Luo, J., Chiang, Y.-M., and Cannon, R. M., Langmuir 21, 7358 (2005).Google Scholar
8. Bishop, C. M., Cannon, R. M., and Carter, W. C., Acta Mater. 53, 4755 (2005).Google Scholar
9. Bishop, C. M. et al. , Mater. Sci. Eng., A 422, 102 (2006).Google Scholar
10. Tang, M., Carter, W. C., and Cannon, R. M., Phys. Rev. Lett. 97, 075502 (2006).Google Scholar
11. Cahn, J. W., J. Chem. Phys. 66, 3667 (1977).Google Scholar
12. Dash, J. G., Contemp. Phys. 30, 89 (1989).Google Scholar
13. Dash, J. G., Rempel, A. M., and Wettlaufer, J. S., Rev. Mod. Phys. 78, 695 (2006).Google Scholar
14. Luo, J., Gupta, V. K., and Yoon, D. H., Appl. Phys. Lett. 87, 231902 (2005).Google Scholar
15. Luo, J., Wang, H., and Chiang, Y.-M., J. Am. Ceram. Soc. 82, 916 (1999).Google Scholar
16. Saiz, E., Tomsia, A. P., and Cannon, R. M., Acta Mater. 46, 2349 (1998).Google Scholar
17. Straumal, B. B., and Baretzky, B., Interf. Sci. 12, 147 (2004).Google Scholar
18. Liu, Y. et al. , Metall. Mater. Trans. A 26A, 2484 (1993).Google Scholar
19. Bertrand, E. et al. , Phys. Rev. Lett. 85, 1282 (2000).Google Scholar
20. Chiang, Y.-M., Wang, H., and Lee, J.-R., J. Microsc. 191, 275 (1998).Google Scholar
21. Lee, J. R. and Chiang, Y.-M., unpublished work.Google Scholar