Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T09:31:53.487Z Has data issue: false hasContentIssue false

Interface Roughness of Quantum Wells Studied by Time-Resolved Photoluminescence

Published online by Cambridge University Press:  25 February 2011

H. X. Jiang
Affiliation:
Kansas State Univ., Manhattan, KS 66506
P. Zhou
Affiliation:
Michigan State Univ., E. Lansing, MI 48824
S. A. Solin
Affiliation:
Michigan State Univ., E. Lansing, MI 48824
G. Bai
Affiliation:
California Institute of Technology, Pasadena, CA 91125.
Get access

Abstract

Optical properties of GaAs-Al0 5Ga0 5As multiple quantum wells affected by interface roughness have been investigated by timeresolved photoluminescence. The interface roughness affects on exciton dynamics is shown to be more complicated than those previously well studied line-width broadening of exciton transitions. A two-exponential decay of exciton luminescence and exciton peak shifting with increasing delay time have been observed. These observations have been successfully interpreted in terms of the interface roughness effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Esaki, L., J. De Physique, 48, C51 (1987).Google Scholar
2. Esaki, L., Proceeding of the 17th International Conference on the Physics of Semiconductors, San Francisco, August, 1984, edited by Chadi, J. D. and Harrison, W. A. (Spring-Verlag, New York, 1985), p.473.Google Scholar
3. Dinger, R., Advances in Solid State Physics, edited by Queisser, H. J. (Pergamonl/Vieweg, Braunschweig, 1975). Vol. 15, p.21.Google Scholar
4. Sakaki, H., IEEE J. Quantum Electron., QE–22, 1609 (1986).Google Scholar
5. Weisbuch, C., Dingle, R., Gossard, A. C., and Wiegmann, W., Solid State Commun., 38, 709 (1981).Google Scholar
6. Weisbuch, C., Dinger, R., Gossard, A. C., and Wiefmann, W., J. Vac. Sci. Technol., 17, 1128 (1980).Google Scholar
7. Hoger, R., Gobel, E. O., Kuhl, J., and Ploog, K., in “The Proceeding of the 17th International Conference on the Physics of Semiconductors,” eds. by Chadi, J. D. and Harrison, W. A., (Spring-Verlag, 1985). p.575.Google Scholar
8. Christen, J., Bimberg, D., Steckenborn, A., and Weimann, G., Appl. Phys. Lett., 44, 84 (1984).Google Scholar
9. Dawson, P., Duggan, G., Ralph, H. I., and Woodbridge, K., in Proceeding of the International Conference on Semiconductors, San Francisco, 1984, edited by Chadi, J. D. and Harrison, W. A. (Spring, New York, 1985), p. 551.Google Scholar
10. Kohl, M., Heitmann, D., Tarucha, S., Leo, K., and Ploog, K., Phys. Rev. B39, 7736 (1989).Google Scholar
11. Jiang, H. X., Zhou, P., and Lin, J. Y., to be published.Google Scholar
12. Masumoto, Y., Tarucha, S., and Okamoto, H. J., Phys. Soc. Japan. 55, 57 (1986).Google Scholar
13. Weinert, H., Henneberg, F., Woggen, V., Uraltsev, I. N., and Bruhl, H. G., Physica Scripta, 35, 76 (1987).Google Scholar
14. Zhou, P., Jiang, H. X., Bannwart, R., Solin, S. A., and Bai, G., Phys. Rev. B, to be published.Google Scholar