Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T02:51:53.850Z Has data issue: false hasContentIssue false

Interface Quality and Interdiffusion in Si-Ge Heterostructures

Published online by Cambridge University Press:  15 February 2011

J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, KIA OR6, CANADA.
D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, KIA OR6, CANADA.
G. C. Aers
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, KIA OR6, CANADA.
M. W. C. Dharma-Wardana
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, KIA OR6, CANADA.
Get access

Abstract

The evolution of interfaces of short-period (SimGen)p superlattices upon annealing has been studied by x-ray reflectometry and Raman scattering spectroscopy. Isothermal annealing treatments at 700° C resulted in a significant material redistribution as evidenced by a strong decay of the superlattice x-ray satellites and by the decay of longitudinal acoustic modes and changes in the optical mode intensity ratios in Raman scattering. Interdiffusion was more pronounced in superlattices of short periodicity. This may possibly be explained by the strong composition dependence of the diffusivity of Ge atoms in Sil-xGex alloys and the degree of preexisting interfacial mixing. This composition dependence of the diffusion may favor atomic displacement parallel to the interfaces leading to an initial smoothing of the interfaces

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Houghton, D.C., Lockwood, D.J., Dharma-wardana, M.W.C., Fenton, E.W., Baribeau, J.-M. and Denhoff, M.W., J. Cryst. Growth 81, 343 (1987).Google Scholar
2. Baribeau, J.-M., Lockwood, D.J., Dharma-wardane, M.W.C., Rowell, N.L. and McCaffrey, J.P., Thin Solid Films 183, 17 (1989).Google Scholar
3. Chang, S. J., Wang, K.L., Bowman, R.C. and Adams, P.M., Appl. Phys. Lett. 54, 1253 (1989).Google Scholar
4. Baribeau, J.-M., Pascual, R. and Saimoto, S., Appl. Phys. Lett. 57, 1502 (1990).Google Scholar
5. Prokes, S.M. and Wang, K.L., Appl. Phys. Lett. 56, 2628 (1990).Google Scholar
6. Greer, A.L. and Spaepen, F., in Synthetic Modulated Structures, Edited by Chang, L.L. and Giessen, B.C. (Academic, Orlando, 1985), p. 419.CrossRefGoogle Scholar
7. McVay, G.L. and DuCharme, A. R., Phys. Rev. B 9, 627 (1974).CrossRefGoogle Scholar
8. Schorer, R., Friess, E., Eberl, K. and Abstreiter, G., Phys. Rev. B 44, 1772 (1991) and references therein.Google Scholar
9. Baribeau, J.-M., D, J. Phys.; Baribeau, J.-M., Lockwood, D.J. and Zhang, P.X., Appl. Surf. Sci., in press.Google Scholar
10. Hollander, B., Butz, R. and Mantl, S., Phys. Rev. B 46, 6975 (1992).Google Scholar
11. Jackman, T.E., Baribeau, J.-M., Lockwood, D.J., Aebi, P., Tyliszczak, T. and Hitchcock, A.P., Phys. Rev. B 45, 13591 (1992).Google Scholar
12. Dharma-wardana, M.W.C., Aers, G.C., Lockwood, D.J. and Baribeau, J.-M., Phys. Rev. B 41, 5319 (1990).Google Scholar
13. Dharma-wardana, M.W.C., Lockwood, D.J., Aers, G.C. and Baribeau, J.-M., J. Phys.: Condensed Matter 1, 2445 (1989).Google Scholar
14. Glembocki, O.J. and Prokes, S.M., SPIE Proceedings 1678, 147 (1992).CrossRefGoogle Scholar