Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:03:15.058Z Has data issue: false hasContentIssue false

Interface properties of Si3N4/Si/n-GaAs metal-insulator-semiconductor structures grown on GaAs(111)B substrate

Published online by Cambridge University Press:  03 September 2012

D.G. Park
Affiliation:
University of Illinois at Urbana-Champaign, Materials Research Laboratory and Coordinated Science Laboratory, 104 South Goodwin Avenue, Urbana, Illinois 61801
D. M. Diatezua
Affiliation:
University of Illinois at Urbana-Champaign, Materials Research Laboratory and Coordinated Science Laboratory, 104 South Goodwin Avenue, Urbana, Illinois 61801
Z. Chen
Affiliation:
University of Illinois at Urbana-Champaign, Materials Research Laboratory and Coordinated Science Laboratory, 104 South Goodwin Avenue, Urbana, Illinois 61801
S. N. Mohammad
Affiliation:
University of Illinois at Urbana-Champaign, Materials Research Laboratory and Coordinated Science Laboratory, 104 South Goodwin Avenue, Urbana, Illinois 61801
H. Morkoç
Affiliation:
Also with Wright Laboratory, Wright Patterson Air Force Base
Get access

Abstract

We present characteristics of Al/Si3N4/Si/n-GaAs metal-insulator-semiconductor (MIS) interfaces grown on GaAs(111)B prepared with a combination of in situ molecular beam epitaxy (MBE) and chemical vapor deposition (CVD) techniques . The density of the surface states in the high 1010 eV-1 cm-2 near the GaAs midgap for the GaAs grown at 575°C and 625°C was obtained. The MIS structure with GaAs homoepitaxial layer grown at 625°C, showing smoother surface morphology than the surface grown at 575 °C, exhibited small hysteresis which was as small as 30 mV under a field excursion of 1.5 MV/cm. The presence of a 1 MHz frequency response at 77 K suggests that the traps be within 60 meV of the conduction band edge of GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hasegawa, H., Akazawa, M., Ishii, H., and Matsuzaki, K., J. Vac. Sci. Technol. B7, 870 (1989).Google Scholar
2 Mui, D. S. L., Fang, S. F. and Morkoç, H., Appl. Phys. Lett. 59, 1887 (1991).; J. Reed, M. Tao, D. G. Park, K. Suzue, A. E. Botchkarev, Z. Fan, D. Li, S.N. Mohammad, S. J. Chey, J. V. Nostrand, D. G. Cahill, and H. Morkoç, Solid State Electron. 38, 1351 (1995).Google Scholar
3 Park, D. G., Chen, Z., Mohammad, S. N., Botchkarev, A. E., and Morkoç, H., Phil. Mag. B 73, 219 (1996).; Z. Chen, D.G. Park, S. Franck, S.N. Mohammad and H. Morkoç, Appl. Phys. Lett. 69, 230 (1996).Google Scholar
4 Cho, A.Y., J. Appl. Phys. 41, 2780 (1970).Google Scholar
5 Chen, P., Rajkumar, K.C., and Madhukar, A., Appl. Phys. Lett. 58, 1771 (1991), J. Vac. Sci. Technol. B 9, 2312 (1991); K. Yang and L.J. Schowalter, Appl. Phys. Lett. 60, 1851 (1992).Google Scholar
6 Woolf, D.A., Westwood, D.I., and Williams, R.H., Semicond. Sci. Technol. 8, 1075 (1993).Google Scholar
7 Cong, L., Williamson, F., and Nathan, M.I., J. Electron. Mater. 25, 305 (1996).Google Scholar
8 Hayakawa, T., Kondo, M., Morita, T., Takahashi, K., Suyama, T., Yamamoto, S., and Hijikara, T., Appl. Phys. Lett. 51, 1705 (1987); Jpn. J. Appl. Phys. 26, L302 (1987).Google Scholar
9 Mailoit, C. and Smith, D.L., Phys. Rev. B 35, 1242 (1987); E.A. Caridi, T.Y. Chang, K.W. Goossen, and L.F. Eastman, Appl. Phys. Lett. 56, 659 (1990).Google Scholar
10 Chen, Z., Mohammad, S.N., Park, D.G., and Morkoç, H., Appl. Phys. Lett., (in press).Google Scholar
11 Adomi, K., Strite, S., Morkoç, H., Nakamura, Y. and Otsuka, N., J. Appl. Phys. 69, 220 (1991).Google Scholar
12 Nicollian, E.H. and Brews, J. R., MOS Physics and Technology. John Wiley & Sons (1982).Google Scholar
13 Freeouf, J. I., Buchanan, D. A., Wright, S. L., Jackson, T. N., and Robinson, B., Appl. Phys. Lett. 57, 1919 (1990).Google Scholar