Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:20:13.472Z Has data issue: false hasContentIssue false

Interface Effects with Ga0.47In0.53As Layers on InP Substrates Prepared by Organometallic Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

J. S. Whiteley*
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12181, (U.S.A.)
S. K. Ghandhi
Affiliation:
Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12181, (U.S.A.)
*
Present address: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

Lattice-matched Ga0.47In0.53As was epitaxially grown on InP substrates by the reaction of triethylgallium, triethylindium and arsine. The mobility and carrier concentration in these layers were determined by sequential etch and Hall effect measurements made on the grown layers. These measurements show a considerable fall–off in mobility in the vicinity of the interface, accompanied by a rapid increase in electron concentration. In situ chloride etching of the substrate, prior to Ga–In–As growth, is shown to reduce significantly but not eliminate these interface effects. In this paper we outline possible reasons for these effects, based on measurements made on films grown with and without substrate etching and also on measurements of the effect of etching on the substrate itself.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearsall, T. P., IEEE J. Quantum Electron., 16 (1980) 709.Google Scholar
2. Bandy, S., Nishimoto, C., Hyder, S. and Hooper, C., Appl. Phys. Lett., 38 (1981) 817.Google Scholar
3. Cappy, A., Garnez, B., Fauquemberques, R., Salmer, G. and Constant, E., IEEE Trans. Electron Devices, 27 (1980) 2158.Google Scholar
4. Barnard, J., Ohno, H., Wood, C. E. and Eastman, L. F., IEEE Electron Devices Lett., 1 (1980) 179.Google Scholar
5. Whiteley, J. S. and Ghandhi, S. K., J. Electrochem. Soc., 129 (1982) 383.CrossRefGoogle Scholar
6. Whiteley, J. S. and Ghandhi, S. K., J. Electrochem. Soc., to be published.Google Scholar
7. Bhat, R. and Ghandhi, S. K., J. Electrochem. Soc., 124 (1977) 1447.Google Scholar
8. van den Brekel, C. H. J., Philips Res. Rep., 32 (1977) 118.Google Scholar
9. Akita, K., Kusunoki, T., Komiya, S. and Kotani, T., J. Cryst. Growth, 46 (1979) 783.Google Scholar
10. Duchemin, J. P., Bonnet, M., Buechet, G. and Koelsch, F., Proc. Conf. on Gallium Arsenide and Related Compounds, 1978, Institute of Physics, London, 1979, p. 10.Google Scholar
11. Hirtz, J. P., Duchemin, J. P., Hirty, P., deCremoux, B. and Pearsall, T. P., Electron. Lett., 16 (1980) 275.Google Scholar
12. Van der Pauw, L. P., Philips Res. Rep., 13 (1958) 1.Google Scholar
13. Oliver, J. D. Jr., and Eastman, L. F., J. Electron. Mater., 9 (1980) 693.Google Scholar
14. Miller, B. I. and McFee, J. H., J. Electrochem. Soc., 125 (1978) 1310.Google Scholar
15. Olsen, G. H. and Ettenberg, M., in Goodman, C. H. L. (ed.), Crystal Growth, Vol. 2, Plenum, New York, 1978, p. 32.Google Scholar
16. Stillman, G. E. and Wolfe, C. M., Thin Solid Films, 31 (1976) 69.Google Scholar
17. Wolfe, C. M., Stillman, G. E. and Dimmock, J. O., J. Appl. Phys., 41 (1970) 504.Google Scholar
18. Stringfellow, G. B., Stall, R. and Koschel, W., Appl. Phys. Lett., 38 (1981) 156.Google Scholar
19. Weisberg, L. R., J. Appl. Phys., 33 (1962) 1817.Google Scholar
20. Smith, V. D. and Deering, W. D., J. Appl. Phys., 53 (1982) 502.CrossRefGoogle Scholar