Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-10-03T02:22:53.806Z Has data issue: false hasContentIssue false

Interface Effects on the Mechanical Properties of Nanocrystalline Nanolaminates

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanocrystalline nanolaminate (ncnl) structures are widely used in the study of physical properties in order to engineer materials for a variety of industrial applications. Often, novel and interesting mechanical behaviours that are found in nanolaminate materials can be linked with two characteristic features of structure. These are the layer pair spacing and the grain size. For the case of nanolaminates synthesized by physical vapor deposition processes, the layer spacing corresponds with the repeating sequence of layer pairs and can be referred to as composition wavelength. The grain size is the average width of the tapered columnar structure along the growth direction. Since the mechanical properties of strength and hardness are known to functionally vary with the separation between dislocations in crystalline materials, both structural features can potentially contribute to the total interfacial area and the characteristic separation of interfaces that mitigate dislocation motion. In this investigation, the individual contribution of layer pair spacing and grain size to the total interfacial structure are each quantified in an assessment of strength and hardness. A model is proposed for the total interfacial area of the material volume under plastic deformation that can quantify the interfacial area contribution from the layer pairs and the grain size. It is anticipated that each structural feature can potentially dominate the plastic deformation of the nanolaminate as dependent upon the specific layer pair spacing, the grain size, and the extent of plastic deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jankowski, A.F., Makowiecki, D.M., et al., J. Appl. Phys. 65 (1989) 44504451 Google Scholar
2 Jankowski, A.F., Bionta, R.M. and Gabriele, P.C., J. Vac. Sci. Technol. A 7 (1989) 210213 Google Scholar
3 Jankowski, A.F., Optical Eng. 29 (1990) 968972 Google Scholar
4 Jankowski, A.F., SPIE Conf. Proc. 1738 (1992) 10-21Google Scholar
5 Childress, J.R., Chien, C.L. and Jankowski, A.F., Phys. Rev. B 45 (1992) 28552862 Google Scholar
6 Simopoulos, A., Devlin, E., et al., Phys. Rev. B 54 (1996) 99319941 Google Scholar
7 Jankowski, A.F. and Tsakalakos, T., Metall. Trans. A 20 (1989) 357362 Google Scholar
8 Jankowski, A.F. and Saw, C.K., Scripta Mater. 51 (2004) 119124 Google Scholar
9 Jankowski, A.F., Defect and Diffusion Forum 266 (2007) 1328 Google Scholar
10 Makowiecki, D.M., Jankowski, A.F., et al., J. Vac. Sci. Technol. A 8 (1990) 39103913 Google Scholar
11 Jankowski, A.F., Wall, M.A., et al., NanoStructured Mater. 9 (1997) 467471 Google Scholar
12 Jankowski, A.F., Hayes, J.P., et al., Thin Solid Films 308/309 (1997) 94100 Google Scholar
13 Jankowski, A.F., Hayes, J.P., and Saw, C.K., Phil. Mag. 87 (2007) 23232334 Google Scholar
14 Jankowski, A.F., Thin Solid Films 220 (1992) 166171 Google Scholar
15 Jankowski, A., Hayes, J., Nilsen, J., et al., Thin Solid Films 469470 (2004) 372-376Google Scholar
16 Jayakody, S., Chaudhuri, J. and Jankowski, A.F., J. Mater. Sci. 32 (1997) 26052609 Google Scholar
17 Chaudhuri, J., Alyan, S.M. and Jankowski, A.F., Thin Solid Films 219 (1992) 6368 Google Scholar
18 Chaudhuri, J., Shah, S., et al., J. Appl. Phys. 71 (1992) 38163820 Google Scholar
19 Jankowski, A.F., Superlattices and Microstructures 6 (1989) 427429 Google Scholar
20 Kohn, V.G., Physica Status Solidi (b) 187 (1995) 61-70Google Scholar
21 Schweitz, K.O, Chevallier, J., Bottiger, J., et al., Phil. Mag. A 81 (2001) 20212032 Google Scholar
22 Jankowski, A.F., J. Appl. Phys. 71 (1992) 17821789 Google Scholar
23 Wall, M.A. and Jankowski, A.F., Thin Solid Films 181 (1989) 313321 Google Scholar
24 Wang, Y.M. and Ma, E., Applied Physics Letters 85 (2004) 27502752 Google Scholar
25 Wei, Q., Cheng, S., Ramesh, K.T., and Ma, E., Mater. Sci. and Eng. A 381 (2004) 7179 Google Scholar
26 Carreker, R.P. and Hibbard, W.R., Acta Metallurgica 1 (1953) 656658 Google Scholar
27 Lu, L., Li, S.X., Lu, K., Scripta Materialia 45 (2001) 11631169 Google Scholar
28 Weertman, J.R., in Nanostructured Materials, Koch, C. (ed.), William Andrew Press, Norwich (2007) pp 537564 Google Scholar
29 Chen, M., Ma, E., and Hemker, K., in NanoMaterials Handbook, Gogotsi, Y. (ed.), CRC Press, New York (2006) pp 407529 Google Scholar
30 Hall, E.O., Proc. Physical Society B 64, (1951) 747753 Google Scholar
31 Hall, E.O., Journal of Mechanics and Physics of Solids 1 (1953) 227233 Google Scholar
32 Petch, N.J., Journal Iron Steel Institute 174 (1953) 2528 Google Scholar
33 Petch, N.J., Progress in Metal Physics 5 (1954) 110 Google Scholar
34 Petch, N.J., Acta Metallurgica 12 (1964) 5965 Google Scholar
35 Douthwaite, R.M. and Petch, N.J., Acta Metallurgica 18 (1970) 211216 Google Scholar
36 Petch, N.J. and Armstrong, R.W., Acta Metallurgica Materialia 38 (1990) 26952700 Google Scholar
37 Chokshi, A.H, Rosen, A., Karch, J., Gleiter, H., Scripta Metallurgica 23 (1989) 16791683 Google Scholar
38 Schwaiger, R., Moser, B., et al., Acta Materialia 51 (2003) 51595172 Google Scholar
39 Schuh, C., Nieh, T.G., Yamasaki, T., Scripta Materialia 46 (2002) 735740 Google Scholar
40 Schuh, C., Nieh, T.G., Iwasaki, H., Acta Materialia 51 (2003) 431443 Google Scholar
41 Swygenhoven, H. Van, Farkas, D., and Caro, A., Phys. Rev. B 62 (2000) 831838 Google Scholar
42 Ungár, T., Ott, S., Sanders, P., Borbély, A., and Weertman, J., Acta Mater. 46 (1998) 36933699 Google Scholar
43 Ke, M., Hackney, S., Milligan, W., and Aifantis, E.C., Nanostructured Mater. 5 (1995) 689697 Google Scholar
44 Shan, Z.W., Stach, E.A., et al., Science 305 (2004) 654657 Google Scholar
45 Wang, Y.M., Li, J. Jr., et al., , Proc. National Acad. Sci. U.S.A. 104 (2007) 1115511160 Google Scholar
46 Jankowski, A. and Tsakalakos, T., J. Applied Physics 57 (1985) 18351838 Google Scholar
47 Jankowski, A.F., Sedillo, E.M. and Hayes, J.P., Japan. J. Appl. Phys. 33 (1994) 50195025 Google Scholar
48 Jankowski, A.F., Surface and Coatings Technology 203 (2008) 484489 Google Scholar
49 Jankowski, A.F. and Shewbridge, J.F., Materials Letters 4 (1986) 313315 Google Scholar
50 Koehler, J.S., Physical Review B 2 (1970) 547551 Google Scholar
51 Chu, X. and Barnett, S.A., J. Applied Physics 77 (1995) 44034411 Google Scholar
52 Xu, J., Kamiko, M., et al., J. Applied Physics 89 (2001) 36743678 Google Scholar
53 Li, G., Lao, J., Tian, J., Han, Z., and Gu, M., J. Applied Physics 95 (2004) 9296 Google Scholar
54 Daia, M. Ben, Aubert, P., Labdi, S., et al., J. Applied Physics 87 (2000) 77537757 Google Scholar
55 Wei, L., Kong, M., Dong, Y., and Li, G., J. Applied Physics 98 (2005) 074302-1-4 Google Scholar
56 Cahn, J.W., Acta Metallurgica 11 (1963) 12751282 Google Scholar
57 Kato, M., Mori, T., and Schwartz, L.H., Acta Metallurgica 28 (1980) 285290 Google Scholar
58 Taylor, G.I., Journal of the Institute of Metals, 62 (1938) 307324 Google Scholar
59 Lee, K. M., Yeo, C. D., Polycarpou, A. A., Experimental Mechanics 47 (2007) 107121 Google Scholar
60 Dao, M., Lu, L., Asaro, R.J., Hosson, J.T.M. De, and Ma, E., Acta Mater. 55 (2007) 40414065 Google Scholar
61 Gu, C. D., Lian, J. S., Jiang, Q., Zheng, W.T., J. Physics D: Appl. Phys. 40 (2007) 74407446 Google Scholar
62 Zhu, T., Li, J., Samanta, A., et al., Proc. National Acad. Sci. U.S.A. 104 (2007) 30313036 Google Scholar
63 Burwell, J.T. and Strang, C.D., Proc. Roy. Soc. Lond. A, Math. Phys. Sci. 212 (1952) 470477 Google Scholar
64 Pande, C.S., Masumura, R.A., and Armstrong, R.W., Nanostructured Mater. 2 (1993) 323331 Google Scholar
65 and, T.G. Nieh Wadsworth, J., Scripta Metallurgica et Materialia 25 (1991) 955958 Google Scholar
66 Chen, M., Ma, E., and Hemker, K., in Nanomaterials Handbook, Gogotsi, Y. (ed.), Taylor, and Francis, Boca Raton (2006) p. 523 Google Scholar
67 Hahn, H., Mondal, P., and Padmanabhan, K.A., Nanostructured Materials 9 (1997) 603606 Google Scholar
68 Kumar, K.S., Suresh, S., Chisholm, M.F., et al., Acta Mater. 51 (2003) 387405 Google Scholar
69 Yu, M.. Gutkin, I.A. , Ovid'ko, and Skiba, N.V., Acta Materialia 52 (2004) 17111720 Google Scholar
70 Benkassem, S., Capolungo, L., and Cherkaoui, M., Acta Materialia 55 (2007) 35633572 Google Scholar
71 Jankowski, A.F., J. Magnetism and Magnetic Materials 126 (1993) 185191 Google Scholar
72 Oliver, W.C. and Pharr, G.M., J. Materials Research 7 (1992) 15641583 Google Scholar
73 Hughes, G.D., Smith, S.D., Pande, C.S., et al., Scripta Metallurgica 20 (1986) 9397 Google Scholar
74 Gifkins, R.C., Optical Microscopy of Metals, Elsevier, New York (1970) p. 178 Google Scholar
75 Feldman, C., Ordway, F., and Bernstein, J., J. Vac. Sci. Technol. A 8 (1990) 117122 Google Scholar
76 Giardini, A.A., The American Mineralogist 43 (1958) 957969 Google Scholar
77 Morris, J.W. Jr., Inter. Offshore Polar Engineering Conf. Proc. 16 (2007) 28142818 Google Scholar