Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:36:36.777Z Has data issue: false hasContentIssue false

Interdiffusion Mechanisms in GaAs/AlGaAs Quantum Well Heterostructures Induced by SiO2 Capping and Annealing

Published online by Cambridge University Press:  10 February 2011

A. Pépin
Affiliation:
Laboratoire de Microstructures et de Microélectronique (L2M/CNRS), 196 ave. Henri-Ravéra, 92225 Bagneux, FRANCE, [email protected]
C. Vieu
Affiliation:
Laboratoire de Microstructures et de Microélectronique (L2M/CNRS), 196 ave. Henri-Ravéra, 92225 Bagneux, FRANCE, [email protected]
M. Schneider
Affiliation:
Laboratoire de Microstructures et de Microélectronique (L2M/CNRS), 196 ave. Henri-Ravéra, 92225 Bagneux, FRANCE, [email protected]
H. Launois
Affiliation:
Laboratoire de Microstructures et de Microélectronique (L2M/CNRS), 196 ave. Henri-Ravéra, 92225 Bagneux, FRANCE, [email protected]
E. V. K. Rao
Affiliation:
Centre National d'Etudes des Télécommunications (CNET-Bagneux), 196 ave. Henri-Ravéra, 92225 Bagneux, FRANCE
Get access

Abstract

We have investigated intermixing enhancement in GaAs/AlGaAs quantum well heterostructures achieved by SiO2 capping obtained by rapid thermal chemical vapor deposition. Evidence of fast Ga pumping inside the SiO2 layer during anneal and simultaneous generation of excess Ga vacancies under the SiO2/GaAs interface is presented. A simple model involving the thermal stress arising from the difference in thermal expansion coefficients between SiO2 and GaAs, is proposed to account for the abnormally fast Ga vacancy diffusion inside the heterostructure. A spatial control of the interdiffused areas can be achieved if a suitable stress field is imposed on the semiconductor surface by the capping layers. We show experimental evidence of this effect using a specific patterning of SiO2/Si3N4 bilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Opt. Quantum Electron. 23 (1991) Special Issue on Quantum Well Mixing for OptoelectronicsGoogle Scholar
2. Deppe, D.G., Guido, L.J., Holonyak, N. Jr., Coleman, J.J. and Burnham, R. D., Appl. Phys. Lett. 49, 510 (1986)Google Scholar
3. Guido, L.J., Holonyak, N. Jr., Hsieh, K.C., Kaliski, R.W., Plano, W.E., Burnham, R.D., Thornton, R.L., Epler, J.E. and Paoli, T.L., J. Appl. Phys. 61, 1372 (1987)Google Scholar
4. Suzuki, Y., Iwamnura, H. and Mikami, O., Appl. Phys. Lett. 56, 19 (1989)Google Scholar
5. Pépin, A., Ph. D. Thesis, Université de Paris 6, (1995)Google Scholar
6. Philibert, J., Diffusion et Transport de la Matière dans les Solides (Les Editions de Physique, Les Ulis, 1985)Google Scholar
7. Pépin, A., Vieu, C., Schneider, M., Planel, R., Bloch, J., Benassayag, G., Launois, H., Marzin, J.Y. and Nissim, Y, Appl. Phys. Lett. 69, 61 (1996)Google Scholar
8. Pépin, A., Vieu, C., Schneider, M., Launois, H., and Nissim, Y., J. Vac. Sci. Technol. B 15(1), 142 (1997)Google Scholar