Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:32:20.570Z Has data issue: false hasContentIssue false

Interdiffusion in MBE-Grown Symmetrically and Asymmetrically Strained Si/Si1−xGex Superlattices Investigated by Ion Scattering

Published online by Cambridge University Press:  25 February 2011

B. Holländer
Affiliation:
Inst. für Schicht- und lonentechnik, Forschungszentrum Jülich, W-5170 Jülich, FRG
R. Butz
Affiliation:
Inst. für Schicht- und lonentechnik, Forschungszentrum Jülich, W-5170 Jülich, FRG
S. Mantl
Affiliation:
Inst. für Schicht- und lonentechnik, Forschungszentrum Jülich, W-5170 Jülich, FRG
Get access

Abstract

The interdiffusion in MBE-grown Si/Si1−xGex superlattices was measured by Rutherford backscattering spectrometry. The superlattices consisted of 5 periods of 100 !A Si and 100 !A Si1−xGex layers with Ge concentrations, x, between 0.20 and 0.70. Both, asymmetrically strained superlattices, grown on Si(100), as well as symmetrically strained superlattices, grown on relaxed Si1−y.Gey buffer layers were investigated. Rapid thermal annealing in the temperature range between 900°C and 1125°C leads to significant interdiffusion between the individual layers, indicated by a decrease of the amplitudes of the backscattering spectra. Interdiffusion coefficients were deduced using a Fourier algorithm. The interdiffusion coefficients follow an Arrhenius law for a given Ge concentration. The interdiffusivity increases significantly with increasing Ge concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Noble, D.B., Hoyt, J.L., Gibbons, J.F., Scott, M.P., Ladermann, S.S., Rosner, S.J., and Kamins, T.I., Appl. Phys. Left. 55 (1989) 1978 Google Scholar
[2] Green, M.L., Brasen, D., Temkin, H., Yadvish, R.D., Boone, T., Feldman, L.C., Geva, M., and Spear, B.E., Thin Solid Films 184 (1990) 107 Google Scholar
[3] Green, M.L., Weir, B.E., Brasen, D., Hsieh, Y.F., Higashi, G., Feygenson, A., Feldman, L.C., and Headrick, R.L., J. Appl. Phys. 69 (1991) 745 Google Scholar
[4] Mii, Y.J., Xie, Y.H., Fitzgerald, E.A., Monroe, Don, Thiel, F.A., Weir, B.E., and Feldman, L.C., Appl. Phys. Left. 59 (1991) 1611 Google Scholar
[5] Schäffler, F., Többen, D., Herzog, H.-J., Abstreiter, G., and Holländer, B. Semicond. Sci. Technol. 7 (1992) 260 Google Scholar
[6] Röll, K., and Reill, W., Thin Solid Films 89 (1982) 221 Google Scholar
[7] Hull, R., Bean, J.C., Werder, D.J., and Leibenguth, R.E., Phys.Rev. B40(1989) 1681 Google Scholar
[8] Bean, J.C., J. Vac. Sci. Technol. B4 (1986) 1427 Google Scholar
[9] Doolittle, L.R., Nucl. Instr. Meth. B15 (1986) 277 Google Scholar
[10] lyer, S.S. and LeGoues, F.K., J. Appl. Phys. 65 (1989) 4693 Google Scholar
[11] IJzendoorn, L.J. van, Walle, G.F.A. van de, Gorkum, A.A. van, Theunissen, A.M.L., Heuvel, R.A. van den, and Barrett, J.H., Nucl. Instr. Meth. B50 (1990) 127 Google Scholar
[12] Prokes, S.M., and Wang, K.L., Appl. Phys. Lett. 56 (1990) 2628 Google Scholar