Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:49:04.839Z Has data issue: false hasContentIssue false

Interdiffusion in Amorphous Compositionally Modulated Ni-Zr Thin Films

Published online by Cambridge University Press:  26 February 2011

M. Atzmon
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138.
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138.
Get access

Abstract

We report measurements of interdiffusion in compositionally modulated amorphous Ni-Zr films. We show the dependence of the diffusion coefficient on the modulation wavelength and correlate it with the thermodynamic properties of the Ni-Zr system. A bulk interdiffusion coefficient is extrapolated from the data. Our values for the interdiffusivity in Ni55Zr45 are about three orders of magnitude lower than those obtained by other authors for similar alloys. Possible explanations are suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
2. Cantor, B., in Rapidly Quenched Metals, eds. Steeb, S. and Warlimont, H. (North Holland, Amsterdam 1985), p. 595.Google Scholar
3. Van Rossum, M., Nicolet, M.-A. and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).Google Scholar
4. Cotts, E. J., Meng, W. J. and Johnson, W. L., Phys. Rev. Lett. 57.Google Scholar
5. Highmore, R. J., Evetts, J. E., Greer, A. L. and Somech, R. E., to be published.Google Scholar
6. Atzmon, M., Ph.D. Thesis, California Institute of Technology, 1985.Google Scholar
7. Barbour, J. C., Saris, F. W., Nastasi, M. and Mayer, J. W., Phys. Rev. B 32, 1363 (1985).Google Scholar
Barbour, J. C., Phys. Rev. Lett. 55, 2872 (1985).Google Scholar
8. Hahn, H., Averback, R. S. and Rothman, S. J., Phys. Rev. B 33, 8825 (1986).Google Scholar
9. Greer, A. L. and Spaepen, F., in Synthetic Modulated Structures, eds. Chang, L. L. and Giessen, B. C. (Academic Press, 1985), p. 419.Google Scholar
10. Rosenblum, M. P., Spaepen, F. and Turnbull, D., Appl. Phys. Lett. 37 (1980) 184.Google Scholar
Greer, A. L., Lin, C. J., and Spaepen, F., Proc. 4th Int. Conf. on Rapidly Quenched Metals, eds. Masumoto, T. and Suzuki, K. (Japan Institute of Metals, Sendai, 1982), p. 567.Google Scholar
11. Taub, A. I. and Spaepen, F., Acta Metall. 28, 1781 (1980).Google Scholar
12. Hillert, M., Sc. D. Thesis, Massachusetts Institute of Technology, 1956.Google Scholar
13. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).Google Scholar
14. Clemens, B. M., Johnson, W. L. and Schwarz, R. B., J. Non-Cryst. Sol. 61&62, 817 (1984).Google Scholar
15. Spaepen, F., Greer, A. L., Kelton, K. F. and Bell, J. L., Rev. Sc. Inst. 56 (1985) 1340.Google Scholar
16. Chason, E., Kondo, H., Mizoguchi, T., Cammarata, R. C., Spaepen, F., Window, B., Dunlop, J. B. and Day, R. K., Mat. Res. Soc. Symp. Proc. 1985.Google Scholar
17. Clemens, B. M., Phys. Rev. B 33, 715 (1986).Google Scholar
18. Horvath, J., Pfahler, K., Ulfert, W., Frank, W. and Kronmuller, H., Proc. Int. Conf. on Vacancies and Interstitials in Metals and Alloys, Berlin 1986.Google Scholar