Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:55:11.387Z Has data issue: false hasContentIssue false

Intercalate Phonon Densities of States for Alkali-Graphite Compounds

Published online by Cambridge University Press:  15 February 2011

W. A. Kamitakahara
Affiliation:
Ames Laboratory-USDOE and Dept. of Physics, Iowa State University, Ames, Iowa 50011, USA
H. Zabel
Affiliation:
Dept. of Physics, University of Illinois at Urbana-Champaign and Materials Research Laboratory, Urbana, Illinois 61801, USA
Get access

Abstract

Neutron scattering methods have been used to determine the partial phonon densities of states gM(ν) for inplane vibrations of M atoms in MCx compounds, where M = K, Rb or Cs, and x = 8, 24, 36. Only modes with both phonon wave vectors and displacements in the basal plane are represented in gM(ν). Detailed measurements of the temperature dependence were made for RbC24 and KC24, in order to study the influence of the order-disorder transformations in these compounds. The results are interpreted in terms of different pictures of the disordered state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zabel, H., Kamitakahara, W. A. and Nicklow, R. M., Phys. Rev. B 26 (in press).Google Scholar
2. Kamitakahara, W. A., Wada, N. and Solin, S. A., J. de Physique 42–C6, 311 (1981), and Solid State Commun. (in press).Google Scholar
3. Bredov, M. M., Kotov, B. A., Okuneva, N. M., Oskotskii, V. S., and Shakh-Bugadov, A. L., Sov. Phys. Solid State 9, 214 (1967);Google Scholar
Schweiss, B. P., Renker, B., Schneider, E., and Reichardt, W., in Superconductivity in d- and f-band Metals, ed. by Douglass, D. H. (Plenum, New York, 1976) p. 189.CrossRefGoogle Scholar
4. Solin, S. A., Adv. Chem. Phys. (in press).Google Scholar
5. Clarke, R., Caswell, N. and Solin, S. A., Phys. Rev. Lett. 42, 61 (1979);CrossRefGoogle Scholar
Clarke, R., Caswell, N., Solin, S. A. and Horn, P. M., Phys. Rev. Lett. 43, 2018 (1979).Google Scholar
6. Zabel, H., Jan, Y. M. and Moss, S. C, Physica 99B, 453 (1980).Google Scholar
7. Kambe, N., Dresselbaus, G. and Dresselhaus, M. S., Phys. Rev. B 21, 349 (1980).CrossRefGoogle Scholar
8. Berker, A. N., Kambe, N., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. Lett. 45, 1452 (1980).Google Scholar
9. Copley, J. R. D. and Rowe, J. M., Phys. Rev. A 9, 1656 (1974).CrossRefGoogle Scholar
10. Zabel, H., Magerl, A., Dianoux, A. and Rush, J. J., to be published.Google Scholar
11. Dresselhaus, M. S. and Dresselhaus, G., Adv. in Physics 30, 139 (1981).Google Scholar
12. Al-Jishi, R. and Dresselhaus, G., Phys. Rev. B 26, 4523 (1982);Google Scholar
Leung, S. Y., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B 24, 6083 (1981).Google Scholar