Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:15:14.688Z Has data issue: false hasContentIssue false

Intercalate Aggregation and Nlo Properties of Intercalated Lamellar Chalcogeno Phosphate Lattices

Published online by Cambridge University Press:  10 February 2011

T. Coradin
Affiliation:
Laboratoire de Chimie Inorganique, Univ. de Paris-Sud, 91405 Orsay, France
R. Clement
Affiliation:
Laboratoire de Chimie Inorganique, Univ. de Paris-Sud, 91405 Orsay, France
E. Amoual
Affiliation:
Laboratoire de Physico-Chimie des Rayonnements, Univ. de Paris-Sud, 91405 Orsay, France
J. Holt
Affiliation:
Dept of Chemistry, Univ. of Michigan, Ann Arbor, MI 48109, USA
A. Francis
Affiliation:
Dept of Chemistry, Univ. of Michigan, Ann Arbor, MI 48109, USA
Get access

Abstract

Intercalation compounds of CdPS3 with 4-[4-(dimethylamino)-α-styryl]- 1-methylpyridine cation (DAMS+) exhibit high-efficiency optical second harmonic generation (SHG). This is unexpected since the native CdPS3 host crystallizes in a centrosymmetric lattice. It is believed that the SHG results from the aggregation of the intercalate within the interlamellar spaces of the host lattice. For efficient SHG the spatial organization must have a characteristic length scale on the order of the second harmonic wavelength, or about 1 micron. We have studied the temperature dependence of the fluorescence of CdPS3:DAMS intercalation compounds and have demonstrated the presence of DAMS aggregates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tam, W., Eaton, D. F., Calabrese, J. C., Williams, I. D., Wang, Y., Anderson, A.G., Chem, Mater. 1, p. 128 (1989).Google Scholar
2. Clement, R., Deuff, M., Gledel, C. J., J. Chim. Phys. 85 p. 1053 (1988).Google Scholar
3. Coradine, T., Clement, R., Lacroix, P. G., Nakatani, K., Chem. Mater. 8, p. 2153 (1996).Google Scholar
4. Sibley, S. P., Lifshitz, E., Francis, A. H., J. Phys. Chem. 98 p. 5089 (1994).Google Scholar
5. Schreiber, M., Toyozawa, Y., J. Phys. Soc. Japan 51 p. 1544 (1982); H. Sumi, Y. Toyozawa, J. Phys. Soc. Japan 31 p. 342 (1971)Google Scholar
6. Urbach, F., Phys. Rev. 92 p. 1324 (1953).Google Scholar