Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:42:05.471Z Has data issue: false hasContentIssue false

Interatomic Potential for Condensed Phases and Bulk Defects in Silicon

Published online by Cambridge University Press:  15 February 2011

J. F. Justo
Affiliation:
Department of Nuclear Engineering, MIT, Cambridge, MA 02139
M. Z. Bazant
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138
E. Kaxiras
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138
V. V. Bulatov
Affiliation:
Department of Mechanical Engineering, MIT, Cambridge, MA 02139
S. Yip
Affiliation:
Department of Nuclear Engineering, MIT, Cambridge, MA 02139
Get access

Abstract

We present a new empirical potential for silicon which is a considerable improvement over existing models in describing structures away from equilibrium, such as bulk defects. The interatomic interaction is described by two- and three-body terms using theoretically motivated functional forms which emphasize chemical and physical trends. The numerical parameters in the functional forms are obtained by fitting to several ab initio calculations, which include bulk phases and defect structures. The model is tested to core properties of partial dislocations in the glide set {111}, which are not included in the database, and gives results in very good agreement with ab initio calculations. This is the only known potential capable of describing the structure of both the 30°- and 90°-partial dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
[2] Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
[3] Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
[4] Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
[5] Tersoff, J., Phys. Rev. B 38, 9902 (1988).Google Scholar
[6] Balamane, H., Halicioglu, T., and Tiller, W. A., Phys. Rev. B 46, 2250 (1992).Google Scholar
[7] Kaxiras, E. and Pandey, K. C., Phys. Rev. B 38, 12736 (1988).Google Scholar
[8] Mistriotis, A. D., Flytzanis, N., and Farantos, S. C., Phys. Rev. B 39, 1212 (1989).Google Scholar
[9] Bolding, B. C. and Andersen, H. C., Phys. Rev. B 41, 10568 (1990).Google Scholar
[10] Chelikowsky, J. R. Phillips, J. C., Kamal, M. and Strauss, M., Phys. Rev. Lett. 62, 292 (1989);Google Scholar
Chelikowsky, J. R. and Phillips, J. C., Phys. Rev. B 41, 5735 (1990);Google Scholar
Chelikowsky, J. R., Glassford, K. M. and Phillips, J. C., Phys. Rev. B 44 1538 (1991).Google Scholar
[11] Bazant, M. Z. and Kaxiras, E., Phys. Rev. Lett. 77, 4370 (1996).Google Scholar
[12] Bazant, M. Z., Kaxiras, E. and Justo, J. F. (to be published).Google Scholar
[13] Carlssom, A. E., Fedders, P. A., and Myles, C. W., Phys. Rev. B 41, 1247 (1990).Google Scholar
[14] Ismail-Beigi, S. and Kaxiras, E. (private communication).Google Scholar
[15] The fitting database consists of DFT/LDA total energies computed using a plane wave basis with at least a 12 Ry cutoff. Supercells for the point defect calculations included 53–55 atoms, so that long range elastic relaxation energies, on the order of 0.01 eV [16], are ignored.Google Scholar
[16] Pandey, K. C., Phys. Rev. Lett. 57, 2287 (1986).Google Scholar
[17] Bar-Yam, Y. and Joannopolous, J. D., Phys. Rev. Lett. 52, 1129 (1984).Google Scholar
[18] Kelly, P.J. and Car, R., Phys. Rev. B 45, 6543 (1992).Google Scholar
[19] Seong, H. and Lewis, L. J., Phys. Rev. B 53, 9791 (1996).Google Scholar
[20] Kaxiras, E. and Duesbery, M. S., Phys. Rev. Lett. 70, 3752 (1993).Google Scholar
[21] Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT, Cambridge, 1971).Google Scholar
[22] Wallace, D. C, Thermodynamics of Crystals (Wiley, New York, 1972).Google Scholar
[23] Wang, J., Yip, S., Phillpot, S. R., and Wolf, D., Phys. Rev. Lett. 71, 4182 (1993).Google Scholar
[24] Bernstein, N. and Kaxiras, E., submitted to Phys. Rev. B.Google Scholar
[25] Bulatov, V. V., Yip, S., and Argon, A. S., Phil. Mag. A 72, 453 (1995).Google Scholar
[26] Pandey, K.C. and Kaxiras, E., Phys. Rev. Lett. 66, 915 (1991);Google Scholar
Kaxiras, E. and Pandey, K. C., Phys. Rev. B 47, 1659 (1993).Google Scholar
[27] Trinczek, U. and Teichler, H., Phys. Sta. Sol. A 137, 577 (1993).Google Scholar
[28] Nandedkar, A. S. and Narayan, J., Phil. Mag. A 61, 873 (1990).Google Scholar
[29] Duesbery, M. S., Joos, B., Michel, D. J., Phys. Rev. B 43, 5143 (1991).Google Scholar
[30] Teichler, H., in Polycrystalline Semiconductors, ed. Werner, J. H., Moller, H. J., and Strunk, H. P., Vol. 35 (Springer, New York, 1989), p. 25.Google Scholar
[31] Bigger, J. R. K., Mclnnes, D.A., Sutton, A.P, Payne, M. C, Stich, I., King-Smith, R. D., Bird, D. M., and Clarke, L. J., Phys. Rev. Lett. 69, 2224 (1992).Google Scholar
[32] Arias, T. A., Bulatov, V. V., Yip, S., and Argon, A. S., (unpublished).Google Scholar
[33] Nunes, R. W., Bennetto, J., and Vanderbilt, D., Phys. Rev. Lett. 77, 1516 (1996).Google Scholar